Questions?
See the FAQ
or other info.

Polytope of Type {502}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {502}*1004
Also Known As : 502-gon, {502}. if this polytope has another name.
Group : SmallGroup(1004,3)
Rank : 2
Schlafli Type : {502}
Number of vertices, edges, etc : 502, 502
Order of s0s1 : 502
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {251}*502
   251-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,251)(  3,250)(  4,249)(  5,248)(  6,247)(  7,246)(  8,245)(  9,244)
( 10,243)( 11,242)( 12,241)( 13,240)( 14,239)( 15,238)( 16,237)( 17,236)
( 18,235)( 19,234)( 20,233)( 21,232)( 22,231)( 23,230)( 24,229)( 25,228)
( 26,227)( 27,226)( 28,225)( 29,224)( 30,223)( 31,222)( 32,221)( 33,220)
( 34,219)( 35,218)( 36,217)( 37,216)( 38,215)( 39,214)( 40,213)( 41,212)
( 42,211)( 43,210)( 44,209)( 45,208)( 46,207)( 47,206)( 48,205)( 49,204)
( 50,203)( 51,202)( 52,201)( 53,200)( 54,199)( 55,198)( 56,197)( 57,196)
( 58,195)( 59,194)( 60,193)( 61,192)( 62,191)( 63,190)( 64,189)( 65,188)
( 66,187)( 67,186)( 68,185)( 69,184)( 70,183)( 71,182)( 72,181)( 73,180)
( 74,179)( 75,178)( 76,177)( 77,176)( 78,175)( 79,174)( 80,173)( 81,172)
( 82,171)( 83,170)( 84,169)( 85,168)( 86,167)( 87,166)( 88,165)( 89,164)
( 90,163)( 91,162)( 92,161)( 93,160)( 94,159)( 95,158)( 96,157)( 97,156)
( 98,155)( 99,154)(100,153)(101,152)(102,151)(103,150)(104,149)(105,148)
(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141)(113,140)
(114,139)(115,138)(116,137)(117,136)(118,135)(119,134)(120,133)(121,132)
(122,131)(123,130)(124,129)(125,128)(126,127)(253,502)(254,501)(255,500)
(256,499)(257,498)(258,497)(259,496)(260,495)(261,494)(262,493)(263,492)
(264,491)(265,490)(266,489)(267,488)(268,487)(269,486)(270,485)(271,484)
(272,483)(273,482)(274,481)(275,480)(276,479)(277,478)(278,477)(279,476)
(280,475)(281,474)(282,473)(283,472)(284,471)(285,470)(286,469)(287,468)
(288,467)(289,466)(290,465)(291,464)(292,463)(293,462)(294,461)(295,460)
(296,459)(297,458)(298,457)(299,456)(300,455)(301,454)(302,453)(303,452)
(304,451)(305,450)(306,449)(307,448)(308,447)(309,446)(310,445)(311,444)
(312,443)(313,442)(314,441)(315,440)(316,439)(317,438)(318,437)(319,436)
(320,435)(321,434)(322,433)(323,432)(324,431)(325,430)(326,429)(327,428)
(328,427)(329,426)(330,425)(331,424)(332,423)(333,422)(334,421)(335,420)
(336,419)(337,418)(338,417)(339,416)(340,415)(341,414)(342,413)(343,412)
(344,411)(345,410)(346,409)(347,408)(348,407)(349,406)(350,405)(351,404)
(352,403)(353,402)(354,401)(355,400)(356,399)(357,398)(358,397)(359,396)
(360,395)(361,394)(362,393)(363,392)(364,391)(365,390)(366,389)(367,388)
(368,387)(369,386)(370,385)(371,384)(372,383)(373,382)(374,381)(375,380)
(376,379)(377,378);;
s1 := (  1,253)(  2,252)(  3,502)(  4,501)(  5,500)(  6,499)(  7,498)(  8,497)
(  9,496)( 10,495)( 11,494)( 12,493)( 13,492)( 14,491)( 15,490)( 16,489)
( 17,488)( 18,487)( 19,486)( 20,485)( 21,484)( 22,483)( 23,482)( 24,481)
( 25,480)( 26,479)( 27,478)( 28,477)( 29,476)( 30,475)( 31,474)( 32,473)
( 33,472)( 34,471)( 35,470)( 36,469)( 37,468)( 38,467)( 39,466)( 40,465)
( 41,464)( 42,463)( 43,462)( 44,461)( 45,460)( 46,459)( 47,458)( 48,457)
( 49,456)( 50,455)( 51,454)( 52,453)( 53,452)( 54,451)( 55,450)( 56,449)
( 57,448)( 58,447)( 59,446)( 60,445)( 61,444)( 62,443)( 63,442)( 64,441)
( 65,440)( 66,439)( 67,438)( 68,437)( 69,436)( 70,435)( 71,434)( 72,433)
( 73,432)( 74,431)( 75,430)( 76,429)( 77,428)( 78,427)( 79,426)( 80,425)
( 81,424)( 82,423)( 83,422)( 84,421)( 85,420)( 86,419)( 87,418)( 88,417)
( 89,416)( 90,415)( 91,414)( 92,413)( 93,412)( 94,411)( 95,410)( 96,409)
( 97,408)( 98,407)( 99,406)(100,405)(101,404)(102,403)(103,402)(104,401)
(105,400)(106,399)(107,398)(108,397)(109,396)(110,395)(111,394)(112,393)
(113,392)(114,391)(115,390)(116,389)(117,388)(118,387)(119,386)(120,385)
(121,384)(122,383)(123,382)(124,381)(125,380)(126,379)(127,378)(128,377)
(129,376)(130,375)(131,374)(132,373)(133,372)(134,371)(135,370)(136,369)
(137,368)(138,367)(139,366)(140,365)(141,364)(142,363)(143,362)(144,361)
(145,360)(146,359)(147,358)(148,357)(149,356)(150,355)(151,354)(152,353)
(153,352)(154,351)(155,350)(156,349)(157,348)(158,347)(159,346)(160,345)
(161,344)(162,343)(163,342)(164,341)(165,340)(166,339)(167,338)(168,337)
(169,336)(170,335)(171,334)(172,333)(173,332)(174,331)(175,330)(176,329)
(177,328)(178,327)(179,326)(180,325)(181,324)(182,323)(183,322)(184,321)
(185,320)(186,319)(187,318)(188,317)(189,316)(190,315)(191,314)(192,313)
(193,312)(194,311)(195,310)(196,309)(197,308)(198,307)(199,306)(200,305)
(201,304)(202,303)(203,302)(204,301)(205,300)(206,299)(207,298)(208,297)
(209,296)(210,295)(211,294)(212,293)(213,292)(214,291)(215,290)(216,289)
(217,288)(218,287)(219,286)(220,285)(221,284)(222,283)(223,282)(224,281)
(225,280)(226,279)(227,278)(228,277)(229,276)(230,275)(231,274)(232,273)
(233,272)(234,271)(235,270)(236,269)(237,268)(238,267)(239,266)(240,265)
(241,264)(242,263)(243,262)(244,261)(245,260)(246,259)(247,258)(248,257)
(249,256)(250,255)(251,254);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(502)!(  2,251)(  3,250)(  4,249)(  5,248)(  6,247)(  7,246)(  8,245)
(  9,244)( 10,243)( 11,242)( 12,241)( 13,240)( 14,239)( 15,238)( 16,237)
( 17,236)( 18,235)( 19,234)( 20,233)( 21,232)( 22,231)( 23,230)( 24,229)
( 25,228)( 26,227)( 27,226)( 28,225)( 29,224)( 30,223)( 31,222)( 32,221)
( 33,220)( 34,219)( 35,218)( 36,217)( 37,216)( 38,215)( 39,214)( 40,213)
( 41,212)( 42,211)( 43,210)( 44,209)( 45,208)( 46,207)( 47,206)( 48,205)
( 49,204)( 50,203)( 51,202)( 52,201)( 53,200)( 54,199)( 55,198)( 56,197)
( 57,196)( 58,195)( 59,194)( 60,193)( 61,192)( 62,191)( 63,190)( 64,189)
( 65,188)( 66,187)( 67,186)( 68,185)( 69,184)( 70,183)( 71,182)( 72,181)
( 73,180)( 74,179)( 75,178)( 76,177)( 77,176)( 78,175)( 79,174)( 80,173)
( 81,172)( 82,171)( 83,170)( 84,169)( 85,168)( 86,167)( 87,166)( 88,165)
( 89,164)( 90,163)( 91,162)( 92,161)( 93,160)( 94,159)( 95,158)( 96,157)
( 97,156)( 98,155)( 99,154)(100,153)(101,152)(102,151)(103,150)(104,149)
(105,148)(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141)
(113,140)(114,139)(115,138)(116,137)(117,136)(118,135)(119,134)(120,133)
(121,132)(122,131)(123,130)(124,129)(125,128)(126,127)(253,502)(254,501)
(255,500)(256,499)(257,498)(258,497)(259,496)(260,495)(261,494)(262,493)
(263,492)(264,491)(265,490)(266,489)(267,488)(268,487)(269,486)(270,485)
(271,484)(272,483)(273,482)(274,481)(275,480)(276,479)(277,478)(278,477)
(279,476)(280,475)(281,474)(282,473)(283,472)(284,471)(285,470)(286,469)
(287,468)(288,467)(289,466)(290,465)(291,464)(292,463)(293,462)(294,461)
(295,460)(296,459)(297,458)(298,457)(299,456)(300,455)(301,454)(302,453)
(303,452)(304,451)(305,450)(306,449)(307,448)(308,447)(309,446)(310,445)
(311,444)(312,443)(313,442)(314,441)(315,440)(316,439)(317,438)(318,437)
(319,436)(320,435)(321,434)(322,433)(323,432)(324,431)(325,430)(326,429)
(327,428)(328,427)(329,426)(330,425)(331,424)(332,423)(333,422)(334,421)
(335,420)(336,419)(337,418)(338,417)(339,416)(340,415)(341,414)(342,413)
(343,412)(344,411)(345,410)(346,409)(347,408)(348,407)(349,406)(350,405)
(351,404)(352,403)(353,402)(354,401)(355,400)(356,399)(357,398)(358,397)
(359,396)(360,395)(361,394)(362,393)(363,392)(364,391)(365,390)(366,389)
(367,388)(368,387)(369,386)(370,385)(371,384)(372,383)(373,382)(374,381)
(375,380)(376,379)(377,378);
s1 := Sym(502)!(  1,253)(  2,252)(  3,502)(  4,501)(  5,500)(  6,499)(  7,498)
(  8,497)(  9,496)( 10,495)( 11,494)( 12,493)( 13,492)( 14,491)( 15,490)
( 16,489)( 17,488)( 18,487)( 19,486)( 20,485)( 21,484)( 22,483)( 23,482)
( 24,481)( 25,480)( 26,479)( 27,478)( 28,477)( 29,476)( 30,475)( 31,474)
( 32,473)( 33,472)( 34,471)( 35,470)( 36,469)( 37,468)( 38,467)( 39,466)
( 40,465)( 41,464)( 42,463)( 43,462)( 44,461)( 45,460)( 46,459)( 47,458)
( 48,457)( 49,456)( 50,455)( 51,454)( 52,453)( 53,452)( 54,451)( 55,450)
( 56,449)( 57,448)( 58,447)( 59,446)( 60,445)( 61,444)( 62,443)( 63,442)
( 64,441)( 65,440)( 66,439)( 67,438)( 68,437)( 69,436)( 70,435)( 71,434)
( 72,433)( 73,432)( 74,431)( 75,430)( 76,429)( 77,428)( 78,427)( 79,426)
( 80,425)( 81,424)( 82,423)( 83,422)( 84,421)( 85,420)( 86,419)( 87,418)
( 88,417)( 89,416)( 90,415)( 91,414)( 92,413)( 93,412)( 94,411)( 95,410)
( 96,409)( 97,408)( 98,407)( 99,406)(100,405)(101,404)(102,403)(103,402)
(104,401)(105,400)(106,399)(107,398)(108,397)(109,396)(110,395)(111,394)
(112,393)(113,392)(114,391)(115,390)(116,389)(117,388)(118,387)(119,386)
(120,385)(121,384)(122,383)(123,382)(124,381)(125,380)(126,379)(127,378)
(128,377)(129,376)(130,375)(131,374)(132,373)(133,372)(134,371)(135,370)
(136,369)(137,368)(138,367)(139,366)(140,365)(141,364)(142,363)(143,362)
(144,361)(145,360)(146,359)(147,358)(148,357)(149,356)(150,355)(151,354)
(152,353)(153,352)(154,351)(155,350)(156,349)(157,348)(158,347)(159,346)
(160,345)(161,344)(162,343)(163,342)(164,341)(165,340)(166,339)(167,338)
(168,337)(169,336)(170,335)(171,334)(172,333)(173,332)(174,331)(175,330)
(176,329)(177,328)(178,327)(179,326)(180,325)(181,324)(182,323)(183,322)
(184,321)(185,320)(186,319)(187,318)(188,317)(189,316)(190,315)(191,314)
(192,313)(193,312)(194,311)(195,310)(196,309)(197,308)(198,307)(199,306)
(200,305)(201,304)(202,303)(203,302)(204,301)(205,300)(206,299)(207,298)
(208,297)(209,296)(210,295)(211,294)(212,293)(213,292)(214,291)(215,290)
(216,289)(217,288)(218,287)(219,286)(220,285)(221,284)(222,283)(223,282)
(224,281)(225,280)(226,279)(227,278)(228,277)(229,276)(230,275)(231,274)
(232,273)(233,272)(234,271)(235,270)(236,269)(237,268)(238,267)(239,266)
(240,265)(241,264)(242,263)(243,262)(244,261)(245,260)(246,259)(247,258)
(248,257)(249,256)(250,255)(251,254);
poly := sub<Sym(502)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope