Questions?
See the FAQ
or other info.

Polytope of Type {28,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4}*1008
if this polytope has a name.
Group : SmallGroup(1008,896)
Rank : 3
Schlafli Type : {28,4}
Number of vertices, edges, etc : 126, 252, 18
Order of s0s1s2 : 42
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {4,4}*144
14-fold quotients : {4,4}*72
18-fold quotients : {14,2}*56
36-fold quotients : {7,2}*28
126-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,22)( 9,28)(10,27)(11,26)(12,25)(13,24)(14,23)
(15,43)(16,49)(17,48)(18,47)(19,46)(20,45)(21,44)(30,35)(31,34)(32,33)(36,50)
(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(58,63)(59,62)(60,61);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)(22,44)
(23,43)(24,49)(25,48)(26,47)(27,46)(28,45)(29,51)(30,50)(31,56)(32,55)(33,54)
(34,53)(35,52)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);;
s2 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)(15,50)(16,51)(17,52)
(18,53)(19,54)(20,55)(21,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)
(42,49);;
poly := Group([s0,s1,s2]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(63)!( 2, 7)( 3, 6)( 4, 5)( 8,22)( 9,28)(10,27)(11,26)(12,25)(13,24)
(14,23)(15,43)(16,49)(17,48)(18,47)(19,46)(20,45)(21,44)(30,35)(31,34)(32,33)
(36,50)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(58,63)(59,62)(60,61);
s1 := Sym(63)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)
(22,44)(23,43)(24,49)(25,48)(26,47)(27,46)(28,45)(29,51)(30,50)(31,56)(32,55)
(33,54)(34,53)(35,52)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);
s2 := Sym(63)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)(15,50)(16,51)
(17,52)(18,53)(19,54)(20,55)(21,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)
(42,49);
poly := sub<Sym(63)|s0,s1,s2>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >;

References : None.
to this polytope