Questions?
See the FAQ
or other info.

Polytope of Type {42,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,6,2}*1008a
if this polytope has a name.
Group : SmallGroup(1008,922)
Rank : 4
Schlafli Type : {42,6,2}
Number of vertices, edges, etc : 42, 126, 6, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {14,6,2}*336
   7-fold quotients : {6,6,2}*144b
   9-fold quotients : {14,2,2}*112
   14-fold quotients : {6,3,2}*72
   18-fold quotients : {7,2,2}*56
   21-fold quotients : {2,6,2}*48
   42-fold quotients : {2,3,2}*24
   63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,15)( 9,21)(10,20)(11,19)(12,18)(13,17)(14,16)
(23,28)(24,27)(25,26)(29,36)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(44,49)
(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);;
s1 := ( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)(18,20)
(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)(32,48)
(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);;
s2 := ( 1,22)( 2,23)( 3,24)( 4,25)( 5,26)( 6,27)( 7,28)( 8,36)( 9,37)(10,38)
(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)
(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63);;
s3 := (64,65);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(65)!( 2, 7)( 3, 6)( 4, 5)( 8,15)( 9,21)(10,20)(11,19)(12,18)(13,17)
(14,16)(23,28)(24,27)(25,26)(29,36)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)
(44,49)(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);
s1 := Sym(65)!( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)
(18,20)(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)
(32,48)(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);
s2 := Sym(65)!( 1,22)( 2,23)( 3,24)( 4,25)( 5,26)( 6,27)( 7,28)( 8,36)( 9,37)
(10,38)(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)
(21,35)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63);
s3 := Sym(65)!(64,65);
poly := sub<Sym(65)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope