Questions?
See the FAQ
or other info.

Polytope of Type {42,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,6,2}*1008b
if this polytope has a name.
Group : SmallGroup(1008,942)
Rank : 4
Schlafli Type : {42,6,2}
Number of vertices, edges, etc : 42, 126, 6, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {14,6,2}*336, {42,2,2}*336
   6-fold quotients : {21,2,2}*168
   7-fold quotients : {6,6,2}*144a
   9-fold quotients : {14,2,2}*112
   18-fold quotients : {7,2,2}*56
   21-fold quotients : {2,6,2}*48, {6,2,2}*48
   42-fold quotients : {2,3,2}*24, {3,2,2}*24
   63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 15)(  9, 21)( 10, 20)( 11, 19)( 12, 18)
( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 44, 49)( 45, 48)( 46, 47)( 50, 57)
( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 65, 70)( 66, 69)
( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)( 77, 79)
( 86, 91)( 87, 90)( 88, 89)( 92, 99)( 93,105)( 94,104)( 95,103)( 96,102)
( 97,101)( 98,100)(107,112)(108,111)(109,110)(113,120)(114,126)(115,125)
(116,124)(117,123)(118,122)(119,121);;
s1 := (  1,  9)(  2,  8)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 10)( 15, 16)
( 17, 21)( 18, 20)( 22, 51)( 23, 50)( 24, 56)( 25, 55)( 26, 54)( 27, 53)
( 28, 52)( 29, 44)( 30, 43)( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)
( 36, 58)( 37, 57)( 38, 63)( 39, 62)( 40, 61)( 41, 60)( 42, 59)( 64, 72)
( 65, 71)( 66, 77)( 67, 76)( 68, 75)( 69, 74)( 70, 73)( 78, 79)( 80, 84)
( 81, 83)( 85,114)( 86,113)( 87,119)( 88,118)( 89,117)( 90,116)( 91,115)
( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)( 99,121)
(100,120)(101,126)(102,125)(103,124)(104,123)(105,122);;
s2 := (  1, 85)(  2, 86)(  3, 87)(  4, 88)(  5, 89)(  6, 90)(  7, 91)(  8, 92)
(  9, 93)( 10, 94)( 11, 95)( 12, 96)( 13, 97)( 14, 98)( 15, 99)( 16,100)
( 17,101)( 18,102)( 19,103)( 20,104)( 21,105)( 22, 64)( 23, 65)( 24, 66)
( 25, 67)( 26, 68)( 27, 69)( 28, 70)( 29, 71)( 30, 72)( 31, 73)( 32, 74)
( 33, 75)( 34, 76)( 35, 77)( 36, 78)( 37, 79)( 38, 80)( 39, 81)( 40, 82)
( 41, 83)( 42, 84)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)( 48,111)
( 49,112)( 50,113)( 51,114)( 52,115)( 53,116)( 54,117)( 55,118)( 56,119)
( 57,120)( 58,121)( 59,122)( 60,123)( 61,124)( 62,125)( 63,126);;
s3 := (127,128);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  2,  7)(  3,  6)(  4,  5)(  8, 15)(  9, 21)( 10, 20)( 11, 19)
( 12, 18)( 13, 17)( 14, 16)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)
( 31, 41)( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 44, 49)( 45, 48)( 46, 47)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 65, 70)
( 66, 69)( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)( 86, 91)( 87, 90)( 88, 89)( 92, 99)( 93,105)( 94,104)( 95,103)
( 96,102)( 97,101)( 98,100)(107,112)(108,111)(109,110)(113,120)(114,126)
(115,125)(116,124)(117,123)(118,122)(119,121);
s1 := Sym(128)!(  1,  9)(  2,  8)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 10)
( 15, 16)( 17, 21)( 18, 20)( 22, 51)( 23, 50)( 24, 56)( 25, 55)( 26, 54)
( 27, 53)( 28, 52)( 29, 44)( 30, 43)( 31, 49)( 32, 48)( 33, 47)( 34, 46)
( 35, 45)( 36, 58)( 37, 57)( 38, 63)( 39, 62)( 40, 61)( 41, 60)( 42, 59)
( 64, 72)( 65, 71)( 66, 77)( 67, 76)( 68, 75)( 69, 74)( 70, 73)( 78, 79)
( 80, 84)( 81, 83)( 85,114)( 86,113)( 87,119)( 88,118)( 89,117)( 90,116)
( 91,115)( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)
( 99,121)(100,120)(101,126)(102,125)(103,124)(104,123)(105,122);
s2 := Sym(128)!(  1, 85)(  2, 86)(  3, 87)(  4, 88)(  5, 89)(  6, 90)(  7, 91)
(  8, 92)(  9, 93)( 10, 94)( 11, 95)( 12, 96)( 13, 97)( 14, 98)( 15, 99)
( 16,100)( 17,101)( 18,102)( 19,103)( 20,104)( 21,105)( 22, 64)( 23, 65)
( 24, 66)( 25, 67)( 26, 68)( 27, 69)( 28, 70)( 29, 71)( 30, 72)( 31, 73)
( 32, 74)( 33, 75)( 34, 76)( 35, 77)( 36, 78)( 37, 79)( 38, 80)( 39, 81)
( 40, 82)( 41, 83)( 42, 84)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)
( 48,111)( 49,112)( 50,113)( 51,114)( 52,115)( 53,116)( 54,117)( 55,118)
( 56,119)( 57,120)( 58,121)( 59,122)( 60,123)( 61,124)( 62,125)( 63,126);
s3 := Sym(128)!(127,128);
poly := sub<Sym(128)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope