Questions?
See the FAQ
or other info.

Polytope of Type {42,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,6,2}*1008c
if this polytope has a name.
Group : SmallGroup(1008,942)
Rank : 4
Schlafli Type : {42,6,2}
Number of vertices, edges, etc : 42, 126, 6, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {21,6,2}*504
   3-fold quotients : {42,2,2}*336
   6-fold quotients : {21,2,2}*168
   7-fold quotients : {6,6,2}*144c
   9-fold quotients : {14,2,2}*112
   14-fold quotients : {3,6,2}*72
   18-fold quotients : {7,2,2}*56
   21-fold quotients : {6,2,2}*48
   42-fold quotients : {3,2,2}*24
   63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 15)(  9, 21)( 10, 20)( 11, 19)( 12, 18)
( 13, 17)( 14, 16)( 22, 43)( 23, 49)( 24, 48)( 25, 47)( 26, 46)( 27, 45)
( 28, 44)( 29, 57)( 30, 63)( 31, 62)( 32, 61)( 33, 60)( 34, 59)( 35, 58)
( 36, 50)( 37, 56)( 38, 55)( 39, 54)( 40, 53)( 41, 52)( 42, 51)( 65, 70)
( 66, 69)( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)( 85,106)( 86,112)( 87,111)( 88,110)( 89,109)( 90,108)( 91,107)
( 92,120)( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)( 99,113)
(100,119)(101,118)(102,117)(103,116)(104,115)(105,114);;
s1 := (  1, 93)(  2, 92)(  3, 98)(  4, 97)(  5, 96)(  6, 95)(  7, 94)(  8, 86)
(  9, 85)( 10, 91)( 11, 90)( 12, 89)( 13, 88)( 14, 87)( 15,100)( 16, 99)
( 17,105)( 18,104)( 19,103)( 20,102)( 21,101)( 22, 72)( 23, 71)( 24, 77)
( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 65)( 30, 64)( 31, 70)( 32, 69)
( 33, 68)( 34, 67)( 35, 66)( 36, 79)( 37, 78)( 38, 84)( 39, 83)( 40, 82)
( 41, 81)( 42, 80)( 43,114)( 44,113)( 45,119)( 46,118)( 47,117)( 48,116)
( 49,115)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)( 56,108)
( 57,121)( 58,120)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122);;
s2 := ( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)( 29, 50)
( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)( 37, 58)
( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)( 87,108)
( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)( 95,116)
( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)(103,124)
(104,125)(105,126);;
s3 := (127,128);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  2,  7)(  3,  6)(  4,  5)(  8, 15)(  9, 21)( 10, 20)( 11, 19)
( 12, 18)( 13, 17)( 14, 16)( 22, 43)( 23, 49)( 24, 48)( 25, 47)( 26, 46)
( 27, 45)( 28, 44)( 29, 57)( 30, 63)( 31, 62)( 32, 61)( 33, 60)( 34, 59)
( 35, 58)( 36, 50)( 37, 56)( 38, 55)( 39, 54)( 40, 53)( 41, 52)( 42, 51)
( 65, 70)( 66, 69)( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)
( 76, 80)( 77, 79)( 85,106)( 86,112)( 87,111)( 88,110)( 89,109)( 90,108)
( 91,107)( 92,120)( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)
( 99,113)(100,119)(101,118)(102,117)(103,116)(104,115)(105,114);
s1 := Sym(128)!(  1, 93)(  2, 92)(  3, 98)(  4, 97)(  5, 96)(  6, 95)(  7, 94)
(  8, 86)(  9, 85)( 10, 91)( 11, 90)( 12, 89)( 13, 88)( 14, 87)( 15,100)
( 16, 99)( 17,105)( 18,104)( 19,103)( 20,102)( 21,101)( 22, 72)( 23, 71)
( 24, 77)( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 65)( 30, 64)( 31, 70)
( 32, 69)( 33, 68)( 34, 67)( 35, 66)( 36, 79)( 37, 78)( 38, 84)( 39, 83)
( 40, 82)( 41, 81)( 42, 80)( 43,114)( 44,113)( 45,119)( 46,118)( 47,117)
( 48,116)( 49,115)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)
( 56,108)( 57,121)( 58,120)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122);
s2 := Sym(128)!( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)
( 29, 50)( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)
( 37, 58)( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)
( 87,108)( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)
( 95,116)( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)
(103,124)(104,125)(105,126);
s3 := Sym(128)!(127,128);
poly := sub<Sym(128)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope