Questions?
See the FAQ
or other info.

Polytopes for Group SmallGroup(1040,227)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes : None.

Degenerate Polytopes :
  1. {2,2,5,2,13}*1040
  2. {2,2,13,2,5}*1040
  3. {2,5,2,2,13}*1040
  4. {2,5,2,13,2}*1040
  5. {2,5,2,26}*1040
  6. {2,10,2,13}*1040
  7. {2,10,26}*1040
  8. {2,13,2,2,5}*1040
  9. {2,13,2,5,2}*1040
  10. {2,13,2,10}*1040
  11. {2,26,2,5}*1040
  12. {2,26,10}*1040
  13. {5,2,2,2,13}*1040
  14. {5,2,2,13,2}*1040
  15. {5,2,2,26}*1040
  16. {5,2,13,2,2}*1040
  17. {5,2,26,2}*1040
  18. {10,2,2,13}*1040
  19. {10,2,13,2}*1040
  20. {10,2,26}*1040
  21. {10,26,2}*1040
  22. {13,2,2,2,5}*1040
  23. {13,2,2,5,2}*1040
  24. {13,2,2,10}*1040
  25. {13,2,5,2,2}*1040
  26. {13,2,10,2}*1040
  27. {26,2,2,5}*1040
  28. {26,2,5,2}*1040
  29. {26,2,10}*1040
  30. {26,10,2}*1040



Other Groups of Order 1040 :
  1. SmallGroup(1040,71) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(1040,166) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(1040,167) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(1040,204) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(1040,206) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(1040,227) 0 nondegenerate polytopes and 30 degenerate polytopes (this group).
  7. SmallGroup(1040,230) 0 nondegenerate polytopes and 7 degenerate polytopes.