Questions?
See the FAQ
or other info.

# Polytope of Type {44,6,2}

Atlas Canonical Name : {44,6,2}*1056b
if this polytope has a name.
Group : SmallGroup(1056,1015)
Rank : 4
Schlafli Type : {44,6,2}
Number of vertices, edges, etc : 44, 132, 6, 2
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
11-fold quotients : {4,6,2}*96b
22-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1, 3)( 2, 4)( 5,43)( 6,44)( 7,41)( 8,42)( 9,39)(10,40)(11,37)(12,38)
(13,35)(14,36)(15,33)(16,34)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)
(24,26);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,41)(10,43)(11,42)(12,44)(13,37)(14,39)
(15,38)(16,40)(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)
(26,27);;
s2 := ( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)
(42,44);;
s3 := (45,46);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(46)!( 1, 3)( 2, 4)( 5,43)( 6,44)( 7,41)( 8,42)( 9,39)(10,40)(11,37)
(12,38)(13,35)(14,36)(15,33)(16,34)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)
(23,25)(24,26);
s1 := Sym(46)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,41)(10,43)(11,42)(12,44)(13,37)
(14,39)(15,38)(16,40)(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)
(26,27);
s2 := Sym(46)!( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)
(38,40)(42,44);
s3 := Sym(46)!(45,46);
poly := sub<Sym(46)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 >;

```

to this polytope