Questions?
See the FAQ
or other info.

Polytope of Type {2,2,22,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,22,6}*1056
if this polytope has a name.
Group : SmallGroup(1056,1022)
Rank : 5
Schlafli Type : {2,2,22,6}
Number of vertices, edges, etc : 2, 2, 22, 66, 6
Order of s0s1s2s3s4 : 66
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,22,2}*352
   6-fold quotients : {2,2,11,2}*176
   11-fold quotients : {2,2,2,6}*96
   22-fold quotients : {2,2,2,3}*48
   33-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)(21,22)
(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44)(50,59)
(51,58)(52,57)(53,56)(54,55)(61,70)(62,69)(63,68)(64,67)(65,66);;
s3 := ( 5, 6)( 7,15)( 8,14)( 9,13)(10,12)(16,28)(17,27)(18,37)(19,36)(20,35)
(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(38,39)(40,48)(41,47)(42,46)(43,45)
(49,61)(50,60)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)
(59,62);;
s4 := ( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)(12,56)(13,57)(14,58)
(15,59)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47)
(26,48)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)
(37,70);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(70)!(1,2);
s1 := Sym(70)!(3,4);
s2 := Sym(70)!( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)
(21,22)(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44)
(50,59)(51,58)(52,57)(53,56)(54,55)(61,70)(62,69)(63,68)(64,67)(65,66);
s3 := Sym(70)!( 5, 6)( 7,15)( 8,14)( 9,13)(10,12)(16,28)(17,27)(18,37)(19,36)
(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(38,39)(40,48)(41,47)(42,46)
(43,45)(49,61)(50,60)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)
(59,62);
s4 := Sym(70)!( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)(12,56)(13,57)
(14,58)(15,59)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)
(25,47)(26,48)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)
(36,69)(37,70);
poly := sub<Sym(70)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope