Questions?
See the FAQ
or other info.

# Polytope of Type {2,3,2,44}

Atlas Canonical Name : {2,3,2,44}*1056
if this polytope has a name.
Group : SmallGroup(1056,917)
Rank : 5
Schlafli Type : {2,3,2,44}
Number of vertices, edges, etc : 2, 3, 3, 44, 44
Order of s0s1s2s3s4 : 132
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,2,22}*528
4-fold quotients : {2,3,2,11}*264
11-fold quotients : {2,3,2,4}*96
22-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)(26,27)
(28,31)(29,30)(32,33)(34,35)(36,39)(37,38)(40,41)(42,43)(44,47)(45,46)
(48,49);;
s4 := ( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)(21,24)
(23,34)(25,36)(27,30)(29,32)(31,42)(33,44)(35,38)(37,40)(39,48)(41,45)(43,46)
(47,49);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(49)!(1,2);
s1 := Sym(49)!(4,5);
s2 := Sym(49)!(3,4);
s3 := Sym(49)!( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)
(26,27)(28,31)(29,30)(32,33)(34,35)(36,39)(37,38)(40,41)(42,43)(44,47)(45,46)
(48,49);
s4 := Sym(49)!( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)
(21,24)(23,34)(25,36)(27,30)(29,32)(31,42)(33,44)(35,38)(37,40)(39,48)(41,45)
(43,46)(47,49);
poly := sub<Sym(49)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;

```

to this polytope