Questions?
See the FAQ
or other info.

Polytope of Type {6,22,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,22,4}*1056
Also Known As : {{6,22|2},{22,4|2}}. if this polytope has another name.
Group : SmallGroup(1056,926)
Rank : 4
Schlafli Type : {6,22,4}
Number of vertices, edges, etc : 6, 66, 44, 4
Order of s0s1s2s3 : 132
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,22,2}*528
   3-fold quotients : {2,22,4}*352
   6-fold quotients : {2,22,2}*176
   11-fold quotients : {6,2,4}*96
   12-fold quotients : {2,11,2}*88
   22-fold quotients : {3,2,4}*48, {6,2,2}*48
   33-fold quotients : {2,2,4}*32
   44-fold quotients : {3,2,2}*24
   66-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 12, 23)( 13, 24)( 14, 25)( 15, 26)( 16, 27)( 17, 28)( 18, 29)( 19, 30)
( 20, 31)( 21, 32)( 22, 33)( 45, 56)( 46, 57)( 47, 58)( 48, 59)( 49, 60)
( 50, 61)( 51, 62)( 52, 63)( 53, 64)( 54, 65)( 55, 66)( 78, 89)( 79, 90)
( 80, 91)( 81, 92)( 82, 93)( 83, 94)( 84, 95)( 85, 96)( 86, 97)( 87, 98)
( 88, 99)(111,122)(112,123)(113,124)(114,125)(115,126)(116,127)(117,128)
(118,129)(119,130)(120,131)(121,132);;
s1 := (  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)(  8, 16)
(  9, 15)( 10, 14)( 11, 13)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 34, 45)( 35, 55)( 36, 54)( 37, 53)( 38, 52)( 39, 51)( 40, 50)( 41, 49)
( 42, 48)( 43, 47)( 44, 46)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)
( 67, 78)( 68, 88)( 69, 87)( 70, 86)( 71, 85)( 72, 84)( 73, 83)( 74, 82)
( 75, 81)( 76, 80)( 77, 79)( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)
(100,111)(101,121)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)
(108,114)(109,113)(110,112)(123,132)(124,131)(125,130)(126,129)(127,128);;
s2 := (  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)( 34, 35)
( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)( 49, 53)
( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67,101)( 68,100)
( 69,110)( 70,109)( 71,108)( 72,107)( 73,106)( 74,105)( 75,104)( 76,103)
( 77,102)( 78,112)( 79,111)( 80,121)( 81,120)( 82,119)( 83,118)( 84,117)
( 85,116)( 86,115)( 87,114)( 88,113)( 89,123)( 90,122)( 91,132)( 92,131)
( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124);;
s3 := (  1, 67)(  2, 68)(  3, 69)(  4, 70)(  5, 71)(  6, 72)(  7, 73)(  8, 74)
(  9, 75)( 10, 76)( 11, 77)( 12, 78)( 13, 79)( 14, 80)( 15, 81)( 16, 82)
( 17, 83)( 18, 84)( 19, 85)( 20, 86)( 21, 87)( 22, 88)( 23, 89)( 24, 90)
( 25, 91)( 26, 92)( 27, 93)( 28, 94)( 29, 95)( 30, 96)( 31, 97)( 32, 98)
( 33, 99)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)( 40,106)
( 41,107)( 42,108)( 43,109)( 44,110)( 45,111)( 46,112)( 47,113)( 48,114)
( 49,115)( 50,116)( 51,117)( 52,118)( 53,119)( 54,120)( 55,121)( 56,122)
( 57,123)( 58,124)( 59,125)( 60,126)( 61,127)( 62,128)( 63,129)( 64,130)
( 65,131)( 66,132);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(132)!( 12, 23)( 13, 24)( 14, 25)( 15, 26)( 16, 27)( 17, 28)( 18, 29)
( 19, 30)( 20, 31)( 21, 32)( 22, 33)( 45, 56)( 46, 57)( 47, 58)( 48, 59)
( 49, 60)( 50, 61)( 51, 62)( 52, 63)( 53, 64)( 54, 65)( 55, 66)( 78, 89)
( 79, 90)( 80, 91)( 81, 92)( 82, 93)( 83, 94)( 84, 95)( 85, 96)( 86, 97)
( 87, 98)( 88, 99)(111,122)(112,123)(113,124)(114,125)(115,126)(116,127)
(117,128)(118,129)(119,130)(120,131)(121,132);
s1 := Sym(132)!(  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)
(  8, 16)(  9, 15)( 10, 14)( 11, 13)( 24, 33)( 25, 32)( 26, 31)( 27, 30)
( 28, 29)( 34, 45)( 35, 55)( 36, 54)( 37, 53)( 38, 52)( 39, 51)( 40, 50)
( 41, 49)( 42, 48)( 43, 47)( 44, 46)( 57, 66)( 58, 65)( 59, 64)( 60, 63)
( 61, 62)( 67, 78)( 68, 88)( 69, 87)( 70, 86)( 71, 85)( 72, 84)( 73, 83)
( 74, 82)( 75, 81)( 76, 80)( 77, 79)( 90, 99)( 91, 98)( 92, 97)( 93, 96)
( 94, 95)(100,111)(101,121)(102,120)(103,119)(104,118)(105,117)(106,116)
(107,115)(108,114)(109,113)(110,112)(123,132)(124,131)(125,130)(126,129)
(127,128);
s2 := Sym(132)!(  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)
( 15, 21)( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 35)( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)
( 49, 53)( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67,101)
( 68,100)( 69,110)( 70,109)( 71,108)( 72,107)( 73,106)( 74,105)( 75,104)
( 76,103)( 77,102)( 78,112)( 79,111)( 80,121)( 81,120)( 82,119)( 83,118)
( 84,117)( 85,116)( 86,115)( 87,114)( 88,113)( 89,123)( 90,122)( 91,132)
( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124);
s3 := Sym(132)!(  1, 67)(  2, 68)(  3, 69)(  4, 70)(  5, 71)(  6, 72)(  7, 73)
(  8, 74)(  9, 75)( 10, 76)( 11, 77)( 12, 78)( 13, 79)( 14, 80)( 15, 81)
( 16, 82)( 17, 83)( 18, 84)( 19, 85)( 20, 86)( 21, 87)( 22, 88)( 23, 89)
( 24, 90)( 25, 91)( 26, 92)( 27, 93)( 28, 94)( 29, 95)( 30, 96)( 31, 97)
( 32, 98)( 33, 99)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)
( 40,106)( 41,107)( 42,108)( 43,109)( 44,110)( 45,111)( 46,112)( 47,113)
( 48,114)( 49,115)( 50,116)( 51,117)( 52,118)( 53,119)( 54,120)( 55,121)
( 56,122)( 57,123)( 58,124)( 59,125)( 60,126)( 61,127)( 62,128)( 63,129)
( 64,130)( 65,131)( 66,132);
poly := sub<Sym(132)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope