Questions?
See the FAQ
or other info.

Polytope of Type {22,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,4,6}*1056
Also Known As : {{22,4|2},{4,6|2}}. if this polytope has another name.
Group : SmallGroup(1056,926)
Rank : 4
Schlafli Type : {22,4,6}
Number of vertices, edges, etc : 22, 44, 12, 6
Order of s0s1s2s3 : 132
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {22,2,6}*528
   3-fold quotients : {22,4,2}*352
   4-fold quotients : {11,2,6}*264, {22,2,3}*264
   6-fold quotients : {22,2,2}*176
   8-fold quotients : {11,2,3}*132
   11-fold quotients : {2,4,6}*96a
   12-fold quotients : {11,2,2}*88
   22-fold quotients : {2,2,6}*48
   33-fold quotients : {2,4,2}*32
   44-fold quotients : {2,2,3}*24
   66-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 35, 44)
( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)( 49, 52)
( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)( 69, 76)
( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)( 83, 84)
( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)(103,108)
(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117)(123,132)
(124,131)(125,130)(126,129)(127,128);;
s1 := (  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)( 34, 35)
( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)( 49, 53)
( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67,101)( 68,100)
( 69,110)( 70,109)( 71,108)( 72,107)( 73,106)( 74,105)( 75,104)( 76,103)
( 77,102)( 78,112)( 79,111)( 80,121)( 81,120)( 82,119)( 83,118)( 84,117)
( 85,116)( 86,115)( 87,114)( 88,113)( 89,123)( 90,122)( 91,132)( 92,131)
( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124);;
s2 := (  1, 67)(  2, 68)(  3, 69)(  4, 70)(  5, 71)(  6, 72)(  7, 73)(  8, 74)
(  9, 75)( 10, 76)( 11, 77)( 12, 89)( 13, 90)( 14, 91)( 15, 92)( 16, 93)
( 17, 94)( 18, 95)( 19, 96)( 20, 97)( 21, 98)( 22, 99)( 23, 78)( 24, 79)
( 25, 80)( 26, 81)( 27, 82)( 28, 83)( 29, 84)( 30, 85)( 31, 86)( 32, 87)
( 33, 88)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)( 40,106)
( 41,107)( 42,108)( 43,109)( 44,110)( 45,122)( 46,123)( 47,124)( 48,125)
( 49,126)( 50,127)( 51,128)( 52,129)( 53,130)( 54,131)( 55,132)( 56,111)
( 57,112)( 58,113)( 59,114)( 60,115)( 61,116)( 62,117)( 63,118)( 64,119)
( 65,120)( 66,121);;
s3 := (  1, 12)(  2, 13)(  3, 14)(  4, 15)(  5, 16)(  6, 17)(  7, 18)(  8, 19)
(  9, 20)( 10, 21)( 11, 22)( 34, 45)( 35, 46)( 36, 47)( 37, 48)( 38, 49)
( 39, 50)( 40, 51)( 41, 52)( 42, 53)( 43, 54)( 44, 55)( 67, 78)( 68, 79)
( 69, 80)( 70, 81)( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 86)( 76, 87)
( 77, 88)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)(106,117)
(107,118)(108,119)(109,120)(110,121);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(132)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)
( 49, 52)( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)
( 83, 84)( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)
(103,108)(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117)
(123,132)(124,131)(125,130)(126,129)(127,128);
s1 := Sym(132)!(  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12, 13)( 14, 22)
( 15, 21)( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 35)( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)
( 49, 53)( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67,101)
( 68,100)( 69,110)( 70,109)( 71,108)( 72,107)( 73,106)( 74,105)( 75,104)
( 76,103)( 77,102)( 78,112)( 79,111)( 80,121)( 81,120)( 82,119)( 83,118)
( 84,117)( 85,116)( 86,115)( 87,114)( 88,113)( 89,123)( 90,122)( 91,132)
( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124);
s2 := Sym(132)!(  1, 67)(  2, 68)(  3, 69)(  4, 70)(  5, 71)(  6, 72)(  7, 73)
(  8, 74)(  9, 75)( 10, 76)( 11, 77)( 12, 89)( 13, 90)( 14, 91)( 15, 92)
( 16, 93)( 17, 94)( 18, 95)( 19, 96)( 20, 97)( 21, 98)( 22, 99)( 23, 78)
( 24, 79)( 25, 80)( 26, 81)( 27, 82)( 28, 83)( 29, 84)( 30, 85)( 31, 86)
( 32, 87)( 33, 88)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)
( 40,106)( 41,107)( 42,108)( 43,109)( 44,110)( 45,122)( 46,123)( 47,124)
( 48,125)( 49,126)( 50,127)( 51,128)( 52,129)( 53,130)( 54,131)( 55,132)
( 56,111)( 57,112)( 58,113)( 59,114)( 60,115)( 61,116)( 62,117)( 63,118)
( 64,119)( 65,120)( 66,121);
s3 := Sym(132)!(  1, 12)(  2, 13)(  3, 14)(  4, 15)(  5, 16)(  6, 17)(  7, 18)
(  8, 19)(  9, 20)( 10, 21)( 11, 22)( 34, 45)( 35, 46)( 36, 47)( 37, 48)
( 38, 49)( 39, 50)( 40, 51)( 41, 52)( 42, 53)( 43, 54)( 44, 55)( 67, 78)
( 68, 79)( 69, 80)( 70, 81)( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 86)
( 76, 87)( 77, 88)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)
(106,117)(107,118)(108,119)(109,120)(110,121);
poly := sub<Sym(132)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope