Questions?
See the FAQ
or other info.

Polytope of Type {15,6,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,6,3,2}*1080
if this polytope has a name.
Group : SmallGroup(1080,337)
Rank : 5
Schlafli Type : {15,6,3,2}
Number of vertices, edges, etc : 15, 45, 9, 3, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {15,2,3,2}*360
   5-fold quotients : {3,6,3,2}*216
   9-fold quotients : {5,2,3,2}*120
   15-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4,13)( 5,15)( 6,14)( 7,10)( 8,12)( 9,11)(16,31)(17,33)(18,32)
(19,43)(20,45)(21,44)(22,40)(23,42)(24,41)(25,37)(26,39)(27,38)(28,34)(29,36)
(30,35);;
s1 := ( 1,19)( 2,21)( 3,20)( 4,16)( 5,18)( 6,17)( 7,28)( 8,30)( 9,29)(10,25)
(11,27)(12,26)(13,22)(14,24)(15,23)(31,34)(32,36)(33,35)(37,43)(38,45)(39,44)
(41,42);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,33)(34,36)(37,39)(40,42)(43,45);;
s3 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45);;
s4 := (46,47);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!( 2, 3)( 4,13)( 5,15)( 6,14)( 7,10)( 8,12)( 9,11)(16,31)(17,33)
(18,32)(19,43)(20,45)(21,44)(22,40)(23,42)(24,41)(25,37)(26,39)(27,38)(28,34)
(29,36)(30,35);
s1 := Sym(47)!( 1,19)( 2,21)( 3,20)( 4,16)( 5,18)( 6,17)( 7,28)( 8,30)( 9,29)
(10,25)(11,27)(12,26)(13,22)(14,24)(15,23)(31,34)(32,36)(33,35)(37,43)(38,45)
(39,44)(41,42);
s2 := Sym(47)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(16,17)(19,20)(22,23)(25,26)
(28,29)(31,33)(34,36)(37,39)(40,42)(43,45);
s3 := Sym(47)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45);
s4 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope