Questions?
See the FAQ
or other info.

Polytope of Type {544}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {544}*1088
Also Known As : 544-gon, {544}. if this polytope has another name.
Group : SmallGroup(1088,385)
Rank : 2
Schlafli Type : {544}
Number of vertices, edges, etc : 544, 544
Order of s0s1 : 544
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {272}*544
   4-fold quotients : {136}*272
   8-fold quotients : {68}*136
   16-fold quotients : {34}*68
   17-fold quotients : {32}*64
   32-fold quotients : {17}*34
   34-fold quotients : {16}*32
   68-fold quotients : {8}*16
   136-fold quotients : {4}*8
   272-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)( 42, 62)
( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)( 50, 54)
( 51, 53)( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)
( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)( 83,106)
( 84,105)( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)( 91,132)
( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)
(100,123)(101,122)(102,121)(137,205)(138,221)(139,220)(140,219)(141,218)
(142,217)(143,216)(144,215)(145,214)(146,213)(147,212)(148,211)(149,210)
(150,209)(151,208)(152,207)(153,206)(154,222)(155,238)(156,237)(157,236)
(158,235)(159,234)(160,233)(161,232)(162,231)(163,230)(164,229)(165,228)
(166,227)(167,226)(168,225)(169,224)(170,223)(171,256)(172,272)(173,271)
(174,270)(175,269)(176,268)(177,267)(178,266)(179,265)(180,264)(181,263)
(182,262)(183,261)(184,260)(185,259)(186,258)(187,257)(188,239)(189,255)
(190,254)(191,253)(192,252)(193,251)(194,250)(195,249)(196,248)(197,247)
(198,246)(199,245)(200,244)(201,243)(202,242)(203,241)(204,240)(273,409)
(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)(280,419)(281,418)
(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)(288,411)(289,410)
(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)(296,437)(297,436)
(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)(304,429)(305,428)
(306,427)(307,460)(308,476)(309,475)(310,474)(311,473)(312,472)(313,471)
(314,470)(315,469)(316,468)(317,467)(318,466)(319,465)(320,464)(321,463)
(322,462)(323,461)(324,443)(325,459)(326,458)(327,457)(328,456)(329,455)
(330,454)(331,453)(332,452)(333,451)(334,450)(335,449)(336,448)(337,447)
(338,446)(339,445)(340,444)(341,511)(342,527)(343,526)(344,525)(345,524)
(346,523)(347,522)(348,521)(349,520)(350,519)(351,518)(352,517)(353,516)
(354,515)(355,514)(356,513)(357,512)(358,528)(359,544)(360,543)(361,542)
(362,541)(363,540)(364,539)(365,538)(366,537)(367,536)(368,535)(369,534)
(370,533)(371,532)(372,531)(373,530)(374,529)(375,477)(376,493)(377,492)
(378,491)(379,490)(380,489)(381,488)(382,487)(383,486)(384,485)(385,484)
(386,483)(387,482)(388,481)(389,480)(390,479)(391,478)(392,494)(393,510)
(394,509)(395,508)(396,507)(397,506)(398,505)(399,504)(400,503)(401,502)
(402,501)(403,500)(404,499)(405,498)(406,497)(407,496)(408,495);;
s1 := (  1,274)(  2,273)(  3,289)(  4,288)(  5,287)(  6,286)(  7,285)(  8,284)
(  9,283)( 10,282)( 11,281)( 12,280)( 13,279)( 14,278)( 15,277)( 16,276)
( 17,275)( 18,291)( 19,290)( 20,306)( 21,305)( 22,304)( 23,303)( 24,302)
( 25,301)( 26,300)( 27,299)( 28,298)( 29,297)( 30,296)( 31,295)( 32,294)
( 33,293)( 34,292)( 35,325)( 36,324)( 37,340)( 38,339)( 39,338)( 40,337)
( 41,336)( 42,335)( 43,334)( 44,333)( 45,332)( 46,331)( 47,330)( 48,329)
( 49,328)( 50,327)( 51,326)( 52,308)( 53,307)( 54,323)( 55,322)( 56,321)
( 57,320)( 58,319)( 59,318)( 60,317)( 61,316)( 62,315)( 63,314)( 64,313)
( 65,312)( 66,311)( 67,310)( 68,309)( 69,376)( 70,375)( 71,391)( 72,390)
( 73,389)( 74,388)( 75,387)( 76,386)( 77,385)( 78,384)( 79,383)( 80,382)
( 81,381)( 82,380)( 83,379)( 84,378)( 85,377)( 86,393)( 87,392)( 88,408)
( 89,407)( 90,406)( 91,405)( 92,404)( 93,403)( 94,402)( 95,401)( 96,400)
( 97,399)( 98,398)( 99,397)(100,396)(101,395)(102,394)(103,342)(104,341)
(105,357)(106,356)(107,355)(108,354)(109,353)(110,352)(111,351)(112,350)
(113,349)(114,348)(115,347)(116,346)(117,345)(118,344)(119,343)(120,359)
(121,358)(122,374)(123,373)(124,372)(125,371)(126,370)(127,369)(128,368)
(129,367)(130,366)(131,365)(132,364)(133,363)(134,362)(135,361)(136,360)
(137,478)(138,477)(139,493)(140,492)(141,491)(142,490)(143,489)(144,488)
(145,487)(146,486)(147,485)(148,484)(149,483)(150,482)(151,481)(152,480)
(153,479)(154,495)(155,494)(156,510)(157,509)(158,508)(159,507)(160,506)
(161,505)(162,504)(163,503)(164,502)(165,501)(166,500)(167,499)(168,498)
(169,497)(170,496)(171,529)(172,528)(173,544)(174,543)(175,542)(176,541)
(177,540)(178,539)(179,538)(180,537)(181,536)(182,535)(183,534)(184,533)
(185,532)(186,531)(187,530)(188,512)(189,511)(190,527)(191,526)(192,525)
(193,524)(194,523)(195,522)(196,521)(197,520)(198,519)(199,518)(200,517)
(201,516)(202,515)(203,514)(204,513)(205,410)(206,409)(207,425)(208,424)
(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)(216,416)
(217,415)(218,414)(219,413)(220,412)(221,411)(222,427)(223,426)(224,442)
(225,441)(226,440)(227,439)(228,438)(229,437)(230,436)(231,435)(232,434)
(233,433)(234,432)(235,431)(236,430)(237,429)(238,428)(239,461)(240,460)
(241,476)(242,475)(243,474)(244,473)(245,472)(246,471)(247,470)(248,469)
(249,468)(250,467)(251,466)(252,465)(253,464)(254,463)(255,462)(256,444)
(257,443)(258,459)(259,458)(260,457)(261,456)(262,455)(263,454)(264,453)
(265,452)(266,451)(267,450)(268,449)(269,448)(270,447)(271,446)(272,445);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(544)!(  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)
(  9, 10)( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)
( 26, 27)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)
( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)
( 75,114)( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)
( 83,106)( 84,105)( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)
( 91,132)( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)
( 99,124)(100,123)(101,122)(102,121)(137,205)(138,221)(139,220)(140,219)
(141,218)(142,217)(143,216)(144,215)(145,214)(146,213)(147,212)(148,211)
(149,210)(150,209)(151,208)(152,207)(153,206)(154,222)(155,238)(156,237)
(157,236)(158,235)(159,234)(160,233)(161,232)(162,231)(163,230)(164,229)
(165,228)(166,227)(167,226)(168,225)(169,224)(170,223)(171,256)(172,272)
(173,271)(174,270)(175,269)(176,268)(177,267)(178,266)(179,265)(180,264)
(181,263)(182,262)(183,261)(184,260)(185,259)(186,258)(187,257)(188,239)
(189,255)(190,254)(191,253)(192,252)(193,251)(194,250)(195,249)(196,248)
(197,247)(198,246)(199,245)(200,244)(201,243)(202,242)(203,241)(204,240)
(273,409)(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)(280,419)
(281,418)(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)(288,411)
(289,410)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)(304,429)
(305,428)(306,427)(307,460)(308,476)(309,475)(310,474)(311,473)(312,472)
(313,471)(314,470)(315,469)(316,468)(317,467)(318,466)(319,465)(320,464)
(321,463)(322,462)(323,461)(324,443)(325,459)(326,458)(327,457)(328,456)
(329,455)(330,454)(331,453)(332,452)(333,451)(334,450)(335,449)(336,448)
(337,447)(338,446)(339,445)(340,444)(341,511)(342,527)(343,526)(344,525)
(345,524)(346,523)(347,522)(348,521)(349,520)(350,519)(351,518)(352,517)
(353,516)(354,515)(355,514)(356,513)(357,512)(358,528)(359,544)(360,543)
(361,542)(362,541)(363,540)(364,539)(365,538)(366,537)(367,536)(368,535)
(369,534)(370,533)(371,532)(372,531)(373,530)(374,529)(375,477)(376,493)
(377,492)(378,491)(379,490)(380,489)(381,488)(382,487)(383,486)(384,485)
(385,484)(386,483)(387,482)(388,481)(389,480)(390,479)(391,478)(392,494)
(393,510)(394,509)(395,508)(396,507)(397,506)(398,505)(399,504)(400,503)
(401,502)(402,501)(403,500)(404,499)(405,498)(406,497)(407,496)(408,495);
s1 := Sym(544)!(  1,274)(  2,273)(  3,289)(  4,288)(  5,287)(  6,286)(  7,285)
(  8,284)(  9,283)( 10,282)( 11,281)( 12,280)( 13,279)( 14,278)( 15,277)
( 16,276)( 17,275)( 18,291)( 19,290)( 20,306)( 21,305)( 22,304)( 23,303)
( 24,302)( 25,301)( 26,300)( 27,299)( 28,298)( 29,297)( 30,296)( 31,295)
( 32,294)( 33,293)( 34,292)( 35,325)( 36,324)( 37,340)( 38,339)( 39,338)
( 40,337)( 41,336)( 42,335)( 43,334)( 44,333)( 45,332)( 46,331)( 47,330)
( 48,329)( 49,328)( 50,327)( 51,326)( 52,308)( 53,307)( 54,323)( 55,322)
( 56,321)( 57,320)( 58,319)( 59,318)( 60,317)( 61,316)( 62,315)( 63,314)
( 64,313)( 65,312)( 66,311)( 67,310)( 68,309)( 69,376)( 70,375)( 71,391)
( 72,390)( 73,389)( 74,388)( 75,387)( 76,386)( 77,385)( 78,384)( 79,383)
( 80,382)( 81,381)( 82,380)( 83,379)( 84,378)( 85,377)( 86,393)( 87,392)
( 88,408)( 89,407)( 90,406)( 91,405)( 92,404)( 93,403)( 94,402)( 95,401)
( 96,400)( 97,399)( 98,398)( 99,397)(100,396)(101,395)(102,394)(103,342)
(104,341)(105,357)(106,356)(107,355)(108,354)(109,353)(110,352)(111,351)
(112,350)(113,349)(114,348)(115,347)(116,346)(117,345)(118,344)(119,343)
(120,359)(121,358)(122,374)(123,373)(124,372)(125,371)(126,370)(127,369)
(128,368)(129,367)(130,366)(131,365)(132,364)(133,363)(134,362)(135,361)
(136,360)(137,478)(138,477)(139,493)(140,492)(141,491)(142,490)(143,489)
(144,488)(145,487)(146,486)(147,485)(148,484)(149,483)(150,482)(151,481)
(152,480)(153,479)(154,495)(155,494)(156,510)(157,509)(158,508)(159,507)
(160,506)(161,505)(162,504)(163,503)(164,502)(165,501)(166,500)(167,499)
(168,498)(169,497)(170,496)(171,529)(172,528)(173,544)(174,543)(175,542)
(176,541)(177,540)(178,539)(179,538)(180,537)(181,536)(182,535)(183,534)
(184,533)(185,532)(186,531)(187,530)(188,512)(189,511)(190,527)(191,526)
(192,525)(193,524)(194,523)(195,522)(196,521)(197,520)(198,519)(199,518)
(200,517)(201,516)(202,515)(203,514)(204,513)(205,410)(206,409)(207,425)
(208,424)(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)
(216,416)(217,415)(218,414)(219,413)(220,412)(221,411)(222,427)(223,426)
(224,442)(225,441)(226,440)(227,439)(228,438)(229,437)(230,436)(231,435)
(232,434)(233,433)(234,432)(235,431)(236,430)(237,429)(238,428)(239,461)
(240,460)(241,476)(242,475)(243,474)(244,473)(245,472)(246,471)(247,470)
(248,469)(249,468)(250,467)(251,466)(252,465)(253,464)(254,463)(255,462)
(256,444)(257,443)(258,459)(259,458)(260,457)(261,456)(262,455)(263,454)
(264,453)(265,452)(266,451)(267,450)(268,449)(269,448)(270,447)(271,446)
(272,445);
poly := sub<Sym(544)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope