Questions?
See the FAQ
or other info.

Polytope of Type {2,12,6,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,6,2,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,153178)
Rank : 6
Schlafli Type : {2,12,6,2,2}
Number of vertices, edges, etc : 2, 12, 36, 6, 2, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,6,2,2}*576a
   3-fold quotients : {2,12,2,2,2}*384, {2,4,6,2,2}*384a
   6-fold quotients : {2,2,6,2,2}*192, {2,6,2,2,2}*192
   9-fold quotients : {2,4,2,2,2}*128
   12-fold quotients : {2,2,3,2,2}*96, {2,3,2,2,2}*96
   18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,39)( 4,40)( 5,41)( 6,45)( 7,46)( 8,47)( 9,42)(10,43)(11,44)(12,48)
(13,49)(14,50)(15,54)(16,55)(17,56)(18,51)(19,52)(20,53)(21,66)(22,67)(23,68)
(24,72)(25,73)(26,74)(27,69)(28,70)(29,71)(30,57)(31,58)(32,59)(33,63)(34,64)
(35,65)(36,60)(37,61)(38,62);;
s2 := ( 3,60)( 4,62)( 5,61)( 6,57)( 7,59)( 8,58)( 9,63)(10,65)(11,64)(12,69)
(13,71)(14,70)(15,66)(16,68)(17,67)(18,72)(19,74)(20,73)(21,42)(22,44)(23,43)
(24,39)(25,41)(26,40)(27,45)(28,47)(29,46)(30,51)(31,53)(32,52)(33,48)(34,50)
(35,49)(36,54)(37,56)(38,55);;
s3 := ( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)
(33,34)(36,37)(39,40)(42,43)(45,46)(48,49)(51,52)(54,55)(57,58)(60,61)(63,64)
(66,67)(69,70)(72,73);;
s4 := (75,76);;
s5 := (77,78);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!( 3,39)( 4,40)( 5,41)( 6,45)( 7,46)( 8,47)( 9,42)(10,43)(11,44)
(12,48)(13,49)(14,50)(15,54)(16,55)(17,56)(18,51)(19,52)(20,53)(21,66)(22,67)
(23,68)(24,72)(25,73)(26,74)(27,69)(28,70)(29,71)(30,57)(31,58)(32,59)(33,63)
(34,64)(35,65)(36,60)(37,61)(38,62);
s2 := Sym(78)!( 3,60)( 4,62)( 5,61)( 6,57)( 7,59)( 8,58)( 9,63)(10,65)(11,64)
(12,69)(13,71)(14,70)(15,66)(16,68)(17,67)(18,72)(19,74)(20,73)(21,42)(22,44)
(23,43)(24,39)(25,41)(26,40)(27,45)(28,47)(29,46)(30,51)(31,53)(32,52)(33,48)
(34,50)(35,49)(36,54)(37,56)(38,55);
s3 := Sym(78)!( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)
(30,31)(33,34)(36,37)(39,40)(42,43)(45,46)(48,49)(51,52)(54,55)(57,58)(60,61)
(63,64)(66,67)(69,70)(72,73);
s4 := Sym(78)!(75,76);
s5 := Sym(78)!(77,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope