Questions?
See the FAQ
or other info.

Polytope of Type {4,144}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,144}*1152d
if this polytope has a name.
Group : SmallGroup(1152,154003)
Rank : 3
Schlafli Type : {4,144}
Number of vertices, edges, etc : 4, 288, 144
Order of s0s1s2 : 144
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,72}*576c
   3-fold quotients : {4,48}*384d
   4-fold quotients : {4,36}*288b
   6-fold quotients : {4,24}*192c
   8-fold quotients : {4,18}*144b
   12-fold quotients : {4,12}*96b
   16-fold quotients : {4,9}*72
   24-fold quotients : {4,6}*48c
   48-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 39)(  2, 40)(  3, 37)(  4, 38)(  5, 43)(  6, 44)(  7, 41)(  8, 42)
(  9, 47)( 10, 48)( 11, 45)( 12, 46)( 13, 51)( 14, 52)( 15, 49)( 16, 50)
( 17, 55)( 18, 56)( 19, 53)( 20, 54)( 21, 59)( 22, 60)( 23, 57)( 24, 58)
( 25, 63)( 26, 64)( 27, 61)( 28, 62)( 29, 67)( 30, 68)( 31, 65)( 32, 66)
( 33, 71)( 34, 72)( 35, 69)( 36, 70)( 73,111)( 74,112)( 75,109)( 76,110)
( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)( 84,118)
( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)( 92,126)
( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)(100,134)
(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)(108,142)
(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)(152,186)
(153,191)(154,192)(155,189)(156,190)(157,195)(158,196)(159,193)(160,194)
(161,199)(162,200)(163,197)(164,198)(165,203)(166,204)(167,201)(168,202)
(169,207)(170,208)(171,205)(172,206)(173,211)(174,212)(175,209)(176,210)
(177,215)(178,216)(179,213)(180,214)(217,255)(218,256)(219,253)(220,254)
(221,259)(222,260)(223,257)(224,258)(225,263)(226,264)(227,261)(228,262)
(229,267)(230,268)(231,265)(232,266)(233,271)(234,272)(235,269)(236,270)
(237,275)(238,276)(239,273)(240,274)(241,279)(242,280)(243,277)(244,278)
(245,283)(246,284)(247,281)(248,282)(249,287)(250,288)(251,285)(252,286)
(289,327)(290,328)(291,325)(292,326)(293,331)(294,332)(295,329)(296,330)
(297,335)(298,336)(299,333)(300,334)(301,339)(302,340)(303,337)(304,338)
(305,343)(306,344)(307,341)(308,342)(309,347)(310,348)(311,345)(312,346)
(313,351)(314,352)(315,349)(316,350)(317,355)(318,356)(319,353)(320,354)
(321,359)(322,360)(323,357)(324,358)(361,399)(362,400)(363,397)(364,398)
(365,403)(366,404)(367,401)(368,402)(369,407)(370,408)(371,405)(372,406)
(373,411)(374,412)(375,409)(376,410)(377,415)(378,416)(379,413)(380,414)
(381,419)(382,420)(383,417)(384,418)(385,423)(386,424)(387,421)(388,422)
(389,427)(390,428)(391,425)(392,426)(393,431)(394,432)(395,429)(396,430)
(433,471)(434,472)(435,469)(436,470)(437,475)(438,476)(439,473)(440,474)
(441,479)(442,480)(443,477)(444,478)(445,483)(446,484)(447,481)(448,482)
(449,487)(450,488)(451,485)(452,486)(453,491)(454,492)(455,489)(456,490)
(457,495)(458,496)(459,493)(460,494)(461,499)(462,500)(463,497)(464,498)
(465,503)(466,504)(467,501)(468,502)(505,543)(506,544)(507,541)(508,542)
(509,547)(510,548)(511,545)(512,546)(513,551)(514,552)(515,549)(516,550)
(517,555)(518,556)(519,553)(520,554)(521,559)(522,560)(523,557)(524,558)
(525,563)(526,564)(527,561)(528,562)(529,567)(530,568)(531,565)(532,566)
(533,571)(534,572)(535,569)(536,570)(537,575)(538,576)(539,573)(540,574);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)
( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)( 50, 70)
( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)( 58, 62)
( 59, 64)( 60, 63)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)( 78,118)
( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,141)( 86,142)
( 87,144)( 88,143)( 89,137)( 90,138)( 91,140)( 92,139)( 93,133)( 94,134)
( 95,136)( 96,135)( 97,129)( 98,130)( 99,132)(100,131)(101,125)(102,126)
(103,128)(104,127)(105,121)(106,122)(107,124)(108,123)(145,217)(146,218)
(147,220)(148,219)(149,225)(150,226)(151,228)(152,227)(153,221)(154,222)
(155,224)(156,223)(157,249)(158,250)(159,252)(160,251)(161,245)(162,246)
(163,248)(164,247)(165,241)(166,242)(167,244)(168,243)(169,237)(170,238)
(171,240)(172,239)(173,233)(174,234)(175,236)(176,235)(177,229)(178,230)
(179,232)(180,231)(181,253)(182,254)(183,256)(184,255)(185,261)(186,262)
(187,264)(188,263)(189,257)(190,258)(191,260)(192,259)(193,285)(194,286)
(195,288)(196,287)(197,281)(198,282)(199,284)(200,283)(201,277)(202,278)
(203,280)(204,279)(205,273)(206,274)(207,276)(208,275)(209,269)(210,270)
(211,272)(212,271)(213,265)(214,266)(215,268)(216,267)(289,433)(290,434)
(291,436)(292,435)(293,441)(294,442)(295,444)(296,443)(297,437)(298,438)
(299,440)(300,439)(301,465)(302,466)(303,468)(304,467)(305,461)(306,462)
(307,464)(308,463)(309,457)(310,458)(311,460)(312,459)(313,453)(314,454)
(315,456)(316,455)(317,449)(318,450)(319,452)(320,451)(321,445)(322,446)
(323,448)(324,447)(325,469)(326,470)(327,472)(328,471)(329,477)(330,478)
(331,480)(332,479)(333,473)(334,474)(335,476)(336,475)(337,501)(338,502)
(339,504)(340,503)(341,497)(342,498)(343,500)(344,499)(345,493)(346,494)
(347,496)(348,495)(349,489)(350,490)(351,492)(352,491)(353,485)(354,486)
(355,488)(356,487)(357,481)(358,482)(359,484)(360,483)(361,541)(362,542)
(363,544)(364,543)(365,549)(366,550)(367,552)(368,551)(369,545)(370,546)
(371,548)(372,547)(373,573)(374,574)(375,576)(376,575)(377,569)(378,570)
(379,572)(380,571)(381,565)(382,566)(383,568)(384,567)(385,561)(386,562)
(387,564)(388,563)(389,557)(390,558)(391,560)(392,559)(393,553)(394,554)
(395,556)(396,555)(397,505)(398,506)(399,508)(400,507)(401,513)(402,514)
(403,516)(404,515)(405,509)(406,510)(407,512)(408,511)(409,537)(410,538)
(411,540)(412,539)(413,533)(414,534)(415,536)(416,535)(417,529)(418,530)
(419,532)(420,531)(421,525)(422,526)(423,528)(424,527)(425,521)(426,522)
(427,524)(428,523)(429,517)(430,518)(431,520)(432,519);;
s2 := (  1,301)(  2,304)(  3,303)(  4,302)(  5,309)(  6,312)(  7,311)(  8,310)
(  9,305)( 10,308)( 11,307)( 12,306)( 13,289)( 14,292)( 15,291)( 16,290)
( 17,297)( 18,300)( 19,299)( 20,298)( 21,293)( 22,296)( 23,295)( 24,294)
( 25,321)( 26,324)( 27,323)( 28,322)( 29,317)( 30,320)( 31,319)( 32,318)
( 33,313)( 34,316)( 35,315)( 36,314)( 37,337)( 38,340)( 39,339)( 40,338)
( 41,345)( 42,348)( 43,347)( 44,346)( 45,341)( 46,344)( 47,343)( 48,342)
( 49,325)( 50,328)( 51,327)( 52,326)( 53,333)( 54,336)( 55,335)( 56,334)
( 57,329)( 58,332)( 59,331)( 60,330)( 61,357)( 62,360)( 63,359)( 64,358)
( 65,353)( 66,356)( 67,355)( 68,354)( 69,349)( 70,352)( 71,351)( 72,350)
( 73,409)( 74,412)( 75,411)( 76,410)( 77,417)( 78,420)( 79,419)( 80,418)
( 81,413)( 82,416)( 83,415)( 84,414)( 85,397)( 86,400)( 87,399)( 88,398)
( 89,405)( 90,408)( 91,407)( 92,406)( 93,401)( 94,404)( 95,403)( 96,402)
( 97,429)( 98,432)( 99,431)(100,430)(101,425)(102,428)(103,427)(104,426)
(105,421)(106,424)(107,423)(108,422)(109,373)(110,376)(111,375)(112,374)
(113,381)(114,384)(115,383)(116,382)(117,377)(118,380)(119,379)(120,378)
(121,361)(122,364)(123,363)(124,362)(125,369)(126,372)(127,371)(128,370)
(129,365)(130,368)(131,367)(132,366)(133,393)(134,396)(135,395)(136,394)
(137,389)(138,392)(139,391)(140,390)(141,385)(142,388)(143,387)(144,386)
(145,517)(146,520)(147,519)(148,518)(149,525)(150,528)(151,527)(152,526)
(153,521)(154,524)(155,523)(156,522)(157,505)(158,508)(159,507)(160,506)
(161,513)(162,516)(163,515)(164,514)(165,509)(166,512)(167,511)(168,510)
(169,537)(170,540)(171,539)(172,538)(173,533)(174,536)(175,535)(176,534)
(177,529)(178,532)(179,531)(180,530)(181,553)(182,556)(183,555)(184,554)
(185,561)(186,564)(187,563)(188,562)(189,557)(190,560)(191,559)(192,558)
(193,541)(194,544)(195,543)(196,542)(197,549)(198,552)(199,551)(200,550)
(201,545)(202,548)(203,547)(204,546)(205,573)(206,576)(207,575)(208,574)
(209,569)(210,572)(211,571)(212,570)(213,565)(214,568)(215,567)(216,566)
(217,445)(218,448)(219,447)(220,446)(221,453)(222,456)(223,455)(224,454)
(225,449)(226,452)(227,451)(228,450)(229,433)(230,436)(231,435)(232,434)
(233,441)(234,444)(235,443)(236,442)(237,437)(238,440)(239,439)(240,438)
(241,465)(242,468)(243,467)(244,466)(245,461)(246,464)(247,463)(248,462)
(249,457)(250,460)(251,459)(252,458)(253,481)(254,484)(255,483)(256,482)
(257,489)(258,492)(259,491)(260,490)(261,485)(262,488)(263,487)(264,486)
(265,469)(266,472)(267,471)(268,470)(269,477)(270,480)(271,479)(272,478)
(273,473)(274,476)(275,475)(276,474)(277,501)(278,504)(279,503)(280,502)
(281,497)(282,500)(283,499)(284,498)(285,493)(286,496)(287,495)(288,494);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1, 39)(  2, 40)(  3, 37)(  4, 38)(  5, 43)(  6, 44)(  7, 41)
(  8, 42)(  9, 47)( 10, 48)( 11, 45)( 12, 46)( 13, 51)( 14, 52)( 15, 49)
( 16, 50)( 17, 55)( 18, 56)( 19, 53)( 20, 54)( 21, 59)( 22, 60)( 23, 57)
( 24, 58)( 25, 63)( 26, 64)( 27, 61)( 28, 62)( 29, 67)( 30, 68)( 31, 65)
( 32, 66)( 33, 71)( 34, 72)( 35, 69)( 36, 70)( 73,111)( 74,112)( 75,109)
( 76,110)( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)
( 84,118)( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)
( 92,126)( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)
(100,134)(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)
(108,142)(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)
(152,186)(153,191)(154,192)(155,189)(156,190)(157,195)(158,196)(159,193)
(160,194)(161,199)(162,200)(163,197)(164,198)(165,203)(166,204)(167,201)
(168,202)(169,207)(170,208)(171,205)(172,206)(173,211)(174,212)(175,209)
(176,210)(177,215)(178,216)(179,213)(180,214)(217,255)(218,256)(219,253)
(220,254)(221,259)(222,260)(223,257)(224,258)(225,263)(226,264)(227,261)
(228,262)(229,267)(230,268)(231,265)(232,266)(233,271)(234,272)(235,269)
(236,270)(237,275)(238,276)(239,273)(240,274)(241,279)(242,280)(243,277)
(244,278)(245,283)(246,284)(247,281)(248,282)(249,287)(250,288)(251,285)
(252,286)(289,327)(290,328)(291,325)(292,326)(293,331)(294,332)(295,329)
(296,330)(297,335)(298,336)(299,333)(300,334)(301,339)(302,340)(303,337)
(304,338)(305,343)(306,344)(307,341)(308,342)(309,347)(310,348)(311,345)
(312,346)(313,351)(314,352)(315,349)(316,350)(317,355)(318,356)(319,353)
(320,354)(321,359)(322,360)(323,357)(324,358)(361,399)(362,400)(363,397)
(364,398)(365,403)(366,404)(367,401)(368,402)(369,407)(370,408)(371,405)
(372,406)(373,411)(374,412)(375,409)(376,410)(377,415)(378,416)(379,413)
(380,414)(381,419)(382,420)(383,417)(384,418)(385,423)(386,424)(387,421)
(388,422)(389,427)(390,428)(391,425)(392,426)(393,431)(394,432)(395,429)
(396,430)(433,471)(434,472)(435,469)(436,470)(437,475)(438,476)(439,473)
(440,474)(441,479)(442,480)(443,477)(444,478)(445,483)(446,484)(447,481)
(448,482)(449,487)(450,488)(451,485)(452,486)(453,491)(454,492)(455,489)
(456,490)(457,495)(458,496)(459,493)(460,494)(461,499)(462,500)(463,497)
(464,498)(465,503)(466,504)(467,501)(468,502)(505,543)(506,544)(507,541)
(508,542)(509,547)(510,548)(511,545)(512,546)(513,551)(514,552)(515,549)
(516,550)(517,555)(518,556)(519,553)(520,554)(521,559)(522,560)(523,557)
(524,558)(525,563)(526,564)(527,561)(528,562)(529,567)(530,568)(531,565)
(532,566)(533,571)(534,572)(535,569)(536,570)(537,575)(538,576)(539,573)
(540,574);
s1 := Sym(576)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)
( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)
( 23, 28)( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)
( 50, 70)( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)
( 58, 62)( 59, 64)( 60, 63)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)
( 78,118)( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,141)
( 86,142)( 87,144)( 88,143)( 89,137)( 90,138)( 91,140)( 92,139)( 93,133)
( 94,134)( 95,136)( 96,135)( 97,129)( 98,130)( 99,132)(100,131)(101,125)
(102,126)(103,128)(104,127)(105,121)(106,122)(107,124)(108,123)(145,217)
(146,218)(147,220)(148,219)(149,225)(150,226)(151,228)(152,227)(153,221)
(154,222)(155,224)(156,223)(157,249)(158,250)(159,252)(160,251)(161,245)
(162,246)(163,248)(164,247)(165,241)(166,242)(167,244)(168,243)(169,237)
(170,238)(171,240)(172,239)(173,233)(174,234)(175,236)(176,235)(177,229)
(178,230)(179,232)(180,231)(181,253)(182,254)(183,256)(184,255)(185,261)
(186,262)(187,264)(188,263)(189,257)(190,258)(191,260)(192,259)(193,285)
(194,286)(195,288)(196,287)(197,281)(198,282)(199,284)(200,283)(201,277)
(202,278)(203,280)(204,279)(205,273)(206,274)(207,276)(208,275)(209,269)
(210,270)(211,272)(212,271)(213,265)(214,266)(215,268)(216,267)(289,433)
(290,434)(291,436)(292,435)(293,441)(294,442)(295,444)(296,443)(297,437)
(298,438)(299,440)(300,439)(301,465)(302,466)(303,468)(304,467)(305,461)
(306,462)(307,464)(308,463)(309,457)(310,458)(311,460)(312,459)(313,453)
(314,454)(315,456)(316,455)(317,449)(318,450)(319,452)(320,451)(321,445)
(322,446)(323,448)(324,447)(325,469)(326,470)(327,472)(328,471)(329,477)
(330,478)(331,480)(332,479)(333,473)(334,474)(335,476)(336,475)(337,501)
(338,502)(339,504)(340,503)(341,497)(342,498)(343,500)(344,499)(345,493)
(346,494)(347,496)(348,495)(349,489)(350,490)(351,492)(352,491)(353,485)
(354,486)(355,488)(356,487)(357,481)(358,482)(359,484)(360,483)(361,541)
(362,542)(363,544)(364,543)(365,549)(366,550)(367,552)(368,551)(369,545)
(370,546)(371,548)(372,547)(373,573)(374,574)(375,576)(376,575)(377,569)
(378,570)(379,572)(380,571)(381,565)(382,566)(383,568)(384,567)(385,561)
(386,562)(387,564)(388,563)(389,557)(390,558)(391,560)(392,559)(393,553)
(394,554)(395,556)(396,555)(397,505)(398,506)(399,508)(400,507)(401,513)
(402,514)(403,516)(404,515)(405,509)(406,510)(407,512)(408,511)(409,537)
(410,538)(411,540)(412,539)(413,533)(414,534)(415,536)(416,535)(417,529)
(418,530)(419,532)(420,531)(421,525)(422,526)(423,528)(424,527)(425,521)
(426,522)(427,524)(428,523)(429,517)(430,518)(431,520)(432,519);
s2 := Sym(576)!(  1,301)(  2,304)(  3,303)(  4,302)(  5,309)(  6,312)(  7,311)
(  8,310)(  9,305)( 10,308)( 11,307)( 12,306)( 13,289)( 14,292)( 15,291)
( 16,290)( 17,297)( 18,300)( 19,299)( 20,298)( 21,293)( 22,296)( 23,295)
( 24,294)( 25,321)( 26,324)( 27,323)( 28,322)( 29,317)( 30,320)( 31,319)
( 32,318)( 33,313)( 34,316)( 35,315)( 36,314)( 37,337)( 38,340)( 39,339)
( 40,338)( 41,345)( 42,348)( 43,347)( 44,346)( 45,341)( 46,344)( 47,343)
( 48,342)( 49,325)( 50,328)( 51,327)( 52,326)( 53,333)( 54,336)( 55,335)
( 56,334)( 57,329)( 58,332)( 59,331)( 60,330)( 61,357)( 62,360)( 63,359)
( 64,358)( 65,353)( 66,356)( 67,355)( 68,354)( 69,349)( 70,352)( 71,351)
( 72,350)( 73,409)( 74,412)( 75,411)( 76,410)( 77,417)( 78,420)( 79,419)
( 80,418)( 81,413)( 82,416)( 83,415)( 84,414)( 85,397)( 86,400)( 87,399)
( 88,398)( 89,405)( 90,408)( 91,407)( 92,406)( 93,401)( 94,404)( 95,403)
( 96,402)( 97,429)( 98,432)( 99,431)(100,430)(101,425)(102,428)(103,427)
(104,426)(105,421)(106,424)(107,423)(108,422)(109,373)(110,376)(111,375)
(112,374)(113,381)(114,384)(115,383)(116,382)(117,377)(118,380)(119,379)
(120,378)(121,361)(122,364)(123,363)(124,362)(125,369)(126,372)(127,371)
(128,370)(129,365)(130,368)(131,367)(132,366)(133,393)(134,396)(135,395)
(136,394)(137,389)(138,392)(139,391)(140,390)(141,385)(142,388)(143,387)
(144,386)(145,517)(146,520)(147,519)(148,518)(149,525)(150,528)(151,527)
(152,526)(153,521)(154,524)(155,523)(156,522)(157,505)(158,508)(159,507)
(160,506)(161,513)(162,516)(163,515)(164,514)(165,509)(166,512)(167,511)
(168,510)(169,537)(170,540)(171,539)(172,538)(173,533)(174,536)(175,535)
(176,534)(177,529)(178,532)(179,531)(180,530)(181,553)(182,556)(183,555)
(184,554)(185,561)(186,564)(187,563)(188,562)(189,557)(190,560)(191,559)
(192,558)(193,541)(194,544)(195,543)(196,542)(197,549)(198,552)(199,551)
(200,550)(201,545)(202,548)(203,547)(204,546)(205,573)(206,576)(207,575)
(208,574)(209,569)(210,572)(211,571)(212,570)(213,565)(214,568)(215,567)
(216,566)(217,445)(218,448)(219,447)(220,446)(221,453)(222,456)(223,455)
(224,454)(225,449)(226,452)(227,451)(228,450)(229,433)(230,436)(231,435)
(232,434)(233,441)(234,444)(235,443)(236,442)(237,437)(238,440)(239,439)
(240,438)(241,465)(242,468)(243,467)(244,466)(245,461)(246,464)(247,463)
(248,462)(249,457)(250,460)(251,459)(252,458)(253,481)(254,484)(255,483)
(256,482)(257,489)(258,492)(259,491)(260,490)(261,485)(262,488)(263,487)
(264,486)(265,469)(266,472)(267,471)(268,470)(269,477)(270,480)(271,479)
(272,478)(273,473)(274,476)(275,475)(276,474)(277,501)(278,504)(279,503)
(280,502)(281,497)(282,500)(283,499)(284,498)(285,493)(286,496)(287,495)
(288,494);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope