Questions?
See the FAQ
or other info.

Polytope of Type {18,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,8,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,154283)
Rank : 4
Schlafli Type : {18,8,2}
Number of vertices, edges, etc : 36, 144, 16, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,8,2}*384a
   4-fold quotients : {18,4,2}*288c
   8-fold quotients : {9,4,2}*144
   12-fold quotients : {6,4,2}*96b
   24-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 15, 16)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 38)( 26, 37)
( 27, 39)( 28, 40)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 49,113)( 50,114)
( 51,116)( 52,115)( 53,122)( 54,121)( 55,123)( 56,124)( 57,118)( 58,117)
( 59,119)( 60,120)( 61,125)( 62,126)( 63,128)( 64,127)( 65, 97)( 66, 98)
( 67,100)( 68, 99)( 69,106)( 70,105)( 71,107)( 72,108)( 73,102)( 74,101)
( 75,103)( 76,104)( 77,109)( 78,110)( 79,112)( 80,111)( 81,129)( 82,130)
( 83,132)( 84,131)( 85,138)( 86,137)( 87,139)( 88,140)( 89,134)( 90,133)
( 91,135)( 92,136)( 93,141)( 94,142)( 95,144)( 96,143);;
s1 := (  1, 49)(  2, 51)(  3, 50)(  4, 52)(  5, 56)(  6, 54)(  7, 55)(  8, 53)
(  9, 64)( 10, 62)( 11, 63)( 12, 61)( 13, 60)( 14, 58)( 15, 59)( 16, 57)
( 17, 81)( 18, 83)( 19, 82)( 20, 84)( 21, 88)( 22, 86)( 23, 87)( 24, 85)
( 25, 96)( 26, 94)( 27, 95)( 28, 93)( 29, 92)( 30, 90)( 31, 91)( 32, 89)
( 33, 65)( 34, 67)( 35, 66)( 36, 68)( 37, 72)( 38, 70)( 39, 71)( 40, 69)
( 41, 80)( 42, 78)( 43, 79)( 44, 77)( 45, 76)( 46, 74)( 47, 75)( 48, 73)
( 97,113)( 98,115)( 99,114)(100,116)(101,120)(102,118)(103,119)(104,117)
(105,128)(106,126)(107,127)(108,125)(109,124)(110,122)(111,123)(112,121)
(130,131)(133,136)(137,144)(138,142)(139,143)(140,141);;
s2 := (  1, 13)(  2, 14)(  3, 15)(  4, 16)(  5,  9)(  6, 10)(  7, 11)(  8, 12)
( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 25)( 22, 26)( 23, 27)( 24, 28)
( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 37, 41)( 38, 42)( 39, 43)( 40, 44)
( 49, 61)( 50, 62)( 51, 63)( 52, 64)( 53, 57)( 54, 58)( 55, 59)( 56, 60)
( 65, 77)( 66, 78)( 67, 79)( 68, 80)( 69, 73)( 70, 74)( 71, 75)( 72, 76)
( 81, 93)( 82, 94)( 83, 95)( 84, 96)( 85, 89)( 86, 90)( 87, 91)( 88, 92)
( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)(104,108)
(113,125)(114,126)(115,127)(116,128)(117,121)(118,122)(119,123)(120,124)
(129,141)(130,142)(131,143)(132,144)(133,137)(134,138)(135,139)(136,140);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  3,  4)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 15, 16)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 38)
( 26, 37)( 27, 39)( 28, 40)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 49,113)
( 50,114)( 51,116)( 52,115)( 53,122)( 54,121)( 55,123)( 56,124)( 57,118)
( 58,117)( 59,119)( 60,120)( 61,125)( 62,126)( 63,128)( 64,127)( 65, 97)
( 66, 98)( 67,100)( 68, 99)( 69,106)( 70,105)( 71,107)( 72,108)( 73,102)
( 74,101)( 75,103)( 76,104)( 77,109)( 78,110)( 79,112)( 80,111)( 81,129)
( 82,130)( 83,132)( 84,131)( 85,138)( 86,137)( 87,139)( 88,140)( 89,134)
( 90,133)( 91,135)( 92,136)( 93,141)( 94,142)( 95,144)( 96,143);
s1 := Sym(146)!(  1, 49)(  2, 51)(  3, 50)(  4, 52)(  5, 56)(  6, 54)(  7, 55)
(  8, 53)(  9, 64)( 10, 62)( 11, 63)( 12, 61)( 13, 60)( 14, 58)( 15, 59)
( 16, 57)( 17, 81)( 18, 83)( 19, 82)( 20, 84)( 21, 88)( 22, 86)( 23, 87)
( 24, 85)( 25, 96)( 26, 94)( 27, 95)( 28, 93)( 29, 92)( 30, 90)( 31, 91)
( 32, 89)( 33, 65)( 34, 67)( 35, 66)( 36, 68)( 37, 72)( 38, 70)( 39, 71)
( 40, 69)( 41, 80)( 42, 78)( 43, 79)( 44, 77)( 45, 76)( 46, 74)( 47, 75)
( 48, 73)( 97,113)( 98,115)( 99,114)(100,116)(101,120)(102,118)(103,119)
(104,117)(105,128)(106,126)(107,127)(108,125)(109,124)(110,122)(111,123)
(112,121)(130,131)(133,136)(137,144)(138,142)(139,143)(140,141);
s2 := Sym(146)!(  1, 13)(  2, 14)(  3, 15)(  4, 16)(  5,  9)(  6, 10)(  7, 11)
(  8, 12)( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 25)( 22, 26)( 23, 27)
( 24, 28)( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 37, 41)( 38, 42)( 39, 43)
( 40, 44)( 49, 61)( 50, 62)( 51, 63)( 52, 64)( 53, 57)( 54, 58)( 55, 59)
( 56, 60)( 65, 77)( 66, 78)( 67, 79)( 68, 80)( 69, 73)( 70, 74)( 71, 75)
( 72, 76)( 81, 93)( 82, 94)( 83, 95)( 84, 96)( 85, 89)( 86, 90)( 87, 91)
( 88, 92)( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)
(104,108)(113,125)(114,126)(115,127)(116,128)(117,121)(118,122)(119,123)
(120,124)(129,141)(130,142)(131,143)(132,144)(133,137)(134,138)(135,139)
(136,140);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope