Questions?
See the FAQ
or other info.

Polytope of Type {8,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,18}*1152g
if this polytope has a name.
Group : SmallGroup(1152,154366)
Rank : 3
Schlafli Type : {8,18}
Number of vertices, edges, etc : 32, 288, 72
Order of s0s1s2 : 72
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,18}*576b
   3-fold quotients : {8,6}*384g
   4-fold quotients : {8,18}*288, {4,18}*288
   6-fold quotients : {4,6}*192b
   8-fold quotients : {4,18}*144a, {4,9}*144, {4,18}*144b, {4,18}*144c
   12-fold quotients : {8,6}*96, {4,6}*96
   16-fold quotients : {4,9}*72, {2,18}*72
   24-fold quotients : {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {2,9}*36
   36-fold quotients : {8,2}*32
   48-fold quotients : {4,3}*24, {2,6}*24
   72-fold quotients : {4,2}*16
   96-fold quotients : {2,3}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73,111)( 74,112)( 75,109)( 76,110)
( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)( 84,118)
( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)( 92,126)
( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)(100,134)
(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)(108,142)
(145,219)(146,220)(147,217)(148,218)(149,223)(150,224)(151,221)(152,222)
(153,227)(154,228)(155,225)(156,226)(157,231)(158,232)(159,229)(160,230)
(161,235)(162,236)(163,233)(164,234)(165,239)(166,240)(167,237)(168,238)
(169,243)(170,244)(171,241)(172,242)(173,247)(174,248)(175,245)(176,246)
(177,251)(178,252)(179,249)(180,250)(181,255)(182,256)(183,253)(184,254)
(185,259)(186,260)(187,257)(188,258)(189,263)(190,264)(191,261)(192,262)
(193,267)(194,268)(195,265)(196,266)(197,271)(198,272)(199,269)(200,270)
(201,275)(202,276)(203,273)(204,274)(205,279)(206,280)(207,277)(208,278)
(209,283)(210,284)(211,281)(212,282)(213,287)(214,288)(215,285)(216,286);;
s1 := (  1,145)(  2,146)(  3,148)(  4,147)(  5,153)(  6,154)(  7,156)(  8,155)
(  9,149)( 10,150)( 11,152)( 12,151)( 13,177)( 14,178)( 15,180)( 16,179)
( 17,173)( 18,174)( 19,176)( 20,175)( 21,169)( 22,170)( 23,172)( 24,171)
( 25,165)( 26,166)( 27,168)( 28,167)( 29,161)( 30,162)( 31,164)( 32,163)
( 33,157)( 34,158)( 35,160)( 36,159)( 37,181)( 38,182)( 39,184)( 40,183)
( 41,189)( 42,190)( 43,192)( 44,191)( 45,185)( 46,186)( 47,188)( 48,187)
( 49,213)( 50,214)( 51,216)( 52,215)( 53,209)( 54,210)( 55,212)( 56,211)
( 57,205)( 58,206)( 59,208)( 60,207)( 61,201)( 62,202)( 63,204)( 64,203)
( 65,197)( 66,198)( 67,200)( 68,199)( 69,193)( 70,194)( 71,196)( 72,195)
( 73,253)( 74,254)( 75,256)( 76,255)( 77,261)( 78,262)( 79,264)( 80,263)
( 81,257)( 82,258)( 83,260)( 84,259)( 85,285)( 86,286)( 87,288)( 88,287)
( 89,281)( 90,282)( 91,284)( 92,283)( 93,277)( 94,278)( 95,280)( 96,279)
( 97,273)( 98,274)( 99,276)(100,275)(101,269)(102,270)(103,272)(104,271)
(105,265)(106,266)(107,268)(108,267)(109,217)(110,218)(111,220)(112,219)
(113,225)(114,226)(115,228)(116,227)(117,221)(118,222)(119,224)(120,223)
(121,249)(122,250)(123,252)(124,251)(125,245)(126,246)(127,248)(128,247)
(129,241)(130,242)(131,244)(132,243)(133,237)(134,238)(135,240)(136,239)
(137,233)(138,234)(139,236)(140,235)(141,229)(142,230)(143,232)(144,231);;
s2 := (  1, 13)(  2, 16)(  3, 15)(  4, 14)(  5, 21)(  6, 24)(  7, 23)(  8, 22)
(  9, 17)( 10, 20)( 11, 19)( 12, 18)( 25, 33)( 26, 36)( 27, 35)( 28, 34)
( 30, 32)( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 57)( 42, 60)( 43, 59)
( 44, 58)( 45, 53)( 46, 56)( 47, 55)( 48, 54)( 61, 69)( 62, 72)( 63, 71)
( 64, 70)( 66, 68)( 73, 85)( 74, 88)( 75, 87)( 76, 86)( 77, 93)( 78, 96)
( 79, 95)( 80, 94)( 81, 89)( 82, 92)( 83, 91)( 84, 90)( 97,105)( 98,108)
( 99,107)(100,106)(102,104)(109,121)(110,124)(111,123)(112,122)(113,129)
(114,132)(115,131)(116,130)(117,125)(118,128)(119,127)(120,126)(133,141)
(134,144)(135,143)(136,142)(138,140)(145,157)(146,160)(147,159)(148,158)
(149,165)(150,168)(151,167)(152,166)(153,161)(154,164)(155,163)(156,162)
(169,177)(170,180)(171,179)(172,178)(174,176)(181,193)(182,196)(183,195)
(184,194)(185,201)(186,204)(187,203)(188,202)(189,197)(190,200)(191,199)
(192,198)(205,213)(206,216)(207,215)(208,214)(210,212)(217,229)(218,232)
(219,231)(220,230)(221,237)(222,240)(223,239)(224,238)(225,233)(226,236)
(227,235)(228,234)(241,249)(242,252)(243,251)(244,250)(246,248)(253,265)
(254,268)(255,267)(256,266)(257,273)(258,276)(259,275)(260,274)(261,269)
(262,272)(263,271)(264,270)(277,285)(278,288)(279,287)(280,286)(282,284);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73,111)( 74,112)( 75,109)
( 76,110)( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)
( 84,118)( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)
( 92,126)( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)
(100,134)(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)
(108,142)(145,219)(146,220)(147,217)(148,218)(149,223)(150,224)(151,221)
(152,222)(153,227)(154,228)(155,225)(156,226)(157,231)(158,232)(159,229)
(160,230)(161,235)(162,236)(163,233)(164,234)(165,239)(166,240)(167,237)
(168,238)(169,243)(170,244)(171,241)(172,242)(173,247)(174,248)(175,245)
(176,246)(177,251)(178,252)(179,249)(180,250)(181,255)(182,256)(183,253)
(184,254)(185,259)(186,260)(187,257)(188,258)(189,263)(190,264)(191,261)
(192,262)(193,267)(194,268)(195,265)(196,266)(197,271)(198,272)(199,269)
(200,270)(201,275)(202,276)(203,273)(204,274)(205,279)(206,280)(207,277)
(208,278)(209,283)(210,284)(211,281)(212,282)(213,287)(214,288)(215,285)
(216,286);
s1 := Sym(288)!(  1,145)(  2,146)(  3,148)(  4,147)(  5,153)(  6,154)(  7,156)
(  8,155)(  9,149)( 10,150)( 11,152)( 12,151)( 13,177)( 14,178)( 15,180)
( 16,179)( 17,173)( 18,174)( 19,176)( 20,175)( 21,169)( 22,170)( 23,172)
( 24,171)( 25,165)( 26,166)( 27,168)( 28,167)( 29,161)( 30,162)( 31,164)
( 32,163)( 33,157)( 34,158)( 35,160)( 36,159)( 37,181)( 38,182)( 39,184)
( 40,183)( 41,189)( 42,190)( 43,192)( 44,191)( 45,185)( 46,186)( 47,188)
( 48,187)( 49,213)( 50,214)( 51,216)( 52,215)( 53,209)( 54,210)( 55,212)
( 56,211)( 57,205)( 58,206)( 59,208)( 60,207)( 61,201)( 62,202)( 63,204)
( 64,203)( 65,197)( 66,198)( 67,200)( 68,199)( 69,193)( 70,194)( 71,196)
( 72,195)( 73,253)( 74,254)( 75,256)( 76,255)( 77,261)( 78,262)( 79,264)
( 80,263)( 81,257)( 82,258)( 83,260)( 84,259)( 85,285)( 86,286)( 87,288)
( 88,287)( 89,281)( 90,282)( 91,284)( 92,283)( 93,277)( 94,278)( 95,280)
( 96,279)( 97,273)( 98,274)( 99,276)(100,275)(101,269)(102,270)(103,272)
(104,271)(105,265)(106,266)(107,268)(108,267)(109,217)(110,218)(111,220)
(112,219)(113,225)(114,226)(115,228)(116,227)(117,221)(118,222)(119,224)
(120,223)(121,249)(122,250)(123,252)(124,251)(125,245)(126,246)(127,248)
(128,247)(129,241)(130,242)(131,244)(132,243)(133,237)(134,238)(135,240)
(136,239)(137,233)(138,234)(139,236)(140,235)(141,229)(142,230)(143,232)
(144,231);
s2 := Sym(288)!(  1, 13)(  2, 16)(  3, 15)(  4, 14)(  5, 21)(  6, 24)(  7, 23)
(  8, 22)(  9, 17)( 10, 20)( 11, 19)( 12, 18)( 25, 33)( 26, 36)( 27, 35)
( 28, 34)( 30, 32)( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 57)( 42, 60)
( 43, 59)( 44, 58)( 45, 53)( 46, 56)( 47, 55)( 48, 54)( 61, 69)( 62, 72)
( 63, 71)( 64, 70)( 66, 68)( 73, 85)( 74, 88)( 75, 87)( 76, 86)( 77, 93)
( 78, 96)( 79, 95)( 80, 94)( 81, 89)( 82, 92)( 83, 91)( 84, 90)( 97,105)
( 98,108)( 99,107)(100,106)(102,104)(109,121)(110,124)(111,123)(112,122)
(113,129)(114,132)(115,131)(116,130)(117,125)(118,128)(119,127)(120,126)
(133,141)(134,144)(135,143)(136,142)(138,140)(145,157)(146,160)(147,159)
(148,158)(149,165)(150,168)(151,167)(152,166)(153,161)(154,164)(155,163)
(156,162)(169,177)(170,180)(171,179)(172,178)(174,176)(181,193)(182,196)
(183,195)(184,194)(185,201)(186,204)(187,203)(188,202)(189,197)(190,200)
(191,199)(192,198)(205,213)(206,216)(207,215)(208,214)(210,212)(217,229)
(218,232)(219,231)(220,230)(221,237)(222,240)(223,239)(224,238)(225,233)
(226,236)(227,235)(228,234)(241,249)(242,252)(243,251)(244,250)(246,248)
(253,265)(254,268)(255,267)(256,266)(257,273)(258,276)(259,275)(260,274)
(261,269)(262,272)(263,271)(264,270)(277,285)(278,288)(279,287)(280,286)
(282,284);
poly := sub<Sym(288)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope