Questions?
See the FAQ
or other info.

Polytope of Type {4,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18}*1152b
if this polytope has a name.
Group : SmallGroup(1152,154380)
Rank : 3
Schlafli Type : {4,18}
Number of vertices, edges, etc : 32, 288, 144
Order of s0s1s2 : 72
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,18}*576b
   3-fold quotients : {4,6}*384b
   4-fold quotients : {4,18}*288
   6-fold quotients : {4,6}*192b
   8-fold quotients : {4,18}*144a, {4,9}*144, {4,18}*144b, {4,18}*144c
   12-fold quotients : {4,6}*96
   16-fold quotients : {4,9}*72, {2,18}*72
   24-fold quotients : {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {2,9}*36
   48-fold quotients : {4,3}*24, {2,6}*24
   72-fold quotients : {4,2}*16
   96-fold quotients : {2,3}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,149)(  2,150)(  3,152)(  4,151)(  5,146)(  6,145)(  7,147)(  8,148)
(  9,157)( 10,158)( 11,160)( 12,159)( 13,154)( 14,153)( 15,155)( 16,156)
( 17,165)( 18,166)( 19,168)( 20,167)( 21,162)( 22,161)( 23,163)( 24,164)
( 25,173)( 26,174)( 27,176)( 28,175)( 29,170)( 30,169)( 31,171)( 32,172)
( 33,181)( 34,182)( 35,184)( 36,183)( 37,178)( 38,177)( 39,179)( 40,180)
( 41,189)( 42,190)( 43,192)( 44,191)( 45,186)( 46,185)( 47,187)( 48,188)
( 49,197)( 50,198)( 51,200)( 52,199)( 53,194)( 54,193)( 55,195)( 56,196)
( 57,205)( 58,206)( 59,208)( 60,207)( 61,202)( 62,201)( 63,203)( 64,204)
( 65,213)( 66,214)( 67,216)( 68,215)( 69,210)( 70,209)( 71,211)( 72,212)
( 73,222)( 74,221)( 75,223)( 76,224)( 77,217)( 78,218)( 79,220)( 80,219)
( 81,230)( 82,229)( 83,231)( 84,232)( 85,225)( 86,226)( 87,228)( 88,227)
( 89,238)( 90,237)( 91,239)( 92,240)( 93,233)( 94,234)( 95,236)( 96,235)
( 97,246)( 98,245)( 99,247)(100,248)(101,241)(102,242)(103,244)(104,243)
(105,254)(106,253)(107,255)(108,256)(109,249)(110,250)(111,252)(112,251)
(113,262)(114,261)(115,263)(116,264)(117,257)(118,258)(119,260)(120,259)
(121,270)(122,269)(123,271)(124,272)(125,265)(126,266)(127,268)(128,267)
(129,278)(130,277)(131,279)(132,280)(133,273)(134,274)(135,276)(136,275)
(137,286)(138,285)(139,287)(140,288)(141,281)(142,282)(143,284)(144,283);;
s1 := (  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 23)
( 14, 24)( 15, 21)( 16, 22)( 25, 65)( 26, 66)( 27, 68)( 28, 67)( 29, 71)
( 30, 72)( 31, 69)( 32, 70)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)
( 38, 64)( 39, 61)( 40, 62)( 41, 49)( 42, 50)( 43, 52)( 44, 51)( 45, 55)
( 46, 56)( 47, 53)( 48, 54)( 73, 74)( 77, 80)( 78, 79)( 81, 90)( 82, 89)
( 83, 91)( 84, 92)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 97,138)( 98,137)
( 99,139)(100,140)(101,144)(102,143)(103,142)(104,141)(105,130)(106,129)
(107,131)(108,132)(109,136)(110,135)(111,134)(112,133)(113,122)(114,121)
(115,123)(116,124)(117,128)(118,127)(119,126)(120,125)(145,218)(146,217)
(147,219)(148,220)(149,224)(150,223)(151,222)(152,221)(153,234)(154,233)
(155,235)(156,236)(157,240)(158,239)(159,238)(160,237)(161,226)(162,225)
(163,227)(164,228)(165,232)(166,231)(167,230)(168,229)(169,282)(170,281)
(171,283)(172,284)(173,288)(174,287)(175,286)(176,285)(177,274)(178,273)
(179,275)(180,276)(181,280)(182,279)(183,278)(184,277)(185,266)(186,265)
(187,267)(188,268)(189,272)(190,271)(191,270)(192,269)(193,258)(194,257)
(195,259)(196,260)(197,264)(198,263)(199,262)(200,261)(201,250)(202,249)
(203,251)(204,252)(205,256)(206,255)(207,254)(208,253)(209,242)(210,241)
(211,243)(212,244)(213,248)(214,247)(215,246)(216,245);;
s2 := (  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)(  8, 28)
(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)( 24, 36)
( 49, 65)( 50, 66)( 51, 71)( 52, 72)( 53, 70)( 54, 69)( 55, 67)( 56, 68)
( 59, 63)( 60, 64)( 61, 62)( 73, 97)( 74, 98)( 75,103)( 76,104)( 77,102)
( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)( 85,118)
( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)( 93,110)
( 94,109)( 95,107)( 96,108)(121,137)(122,138)(123,143)(124,144)(125,142)
(126,141)(127,139)(128,140)(131,135)(132,136)(133,134)(145,170)(146,169)
(147,176)(148,175)(149,173)(150,174)(151,172)(152,171)(153,186)(154,185)
(155,192)(156,191)(157,189)(158,190)(159,188)(160,187)(161,178)(162,177)
(163,184)(164,183)(165,181)(166,182)(167,180)(168,179)(193,210)(194,209)
(195,216)(196,215)(197,213)(198,214)(199,212)(200,211)(201,202)(203,208)
(204,207)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)(223,244)
(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)(231,260)
(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)(239,252)
(240,251)(265,282)(266,281)(267,288)(268,287)(269,285)(270,286)(271,284)
(272,283)(273,274)(275,280)(276,279);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  1,149)(  2,150)(  3,152)(  4,151)(  5,146)(  6,145)(  7,147)
(  8,148)(  9,157)( 10,158)( 11,160)( 12,159)( 13,154)( 14,153)( 15,155)
( 16,156)( 17,165)( 18,166)( 19,168)( 20,167)( 21,162)( 22,161)( 23,163)
( 24,164)( 25,173)( 26,174)( 27,176)( 28,175)( 29,170)( 30,169)( 31,171)
( 32,172)( 33,181)( 34,182)( 35,184)( 36,183)( 37,178)( 38,177)( 39,179)
( 40,180)( 41,189)( 42,190)( 43,192)( 44,191)( 45,186)( 46,185)( 47,187)
( 48,188)( 49,197)( 50,198)( 51,200)( 52,199)( 53,194)( 54,193)( 55,195)
( 56,196)( 57,205)( 58,206)( 59,208)( 60,207)( 61,202)( 62,201)( 63,203)
( 64,204)( 65,213)( 66,214)( 67,216)( 68,215)( 69,210)( 70,209)( 71,211)
( 72,212)( 73,222)( 74,221)( 75,223)( 76,224)( 77,217)( 78,218)( 79,220)
( 80,219)( 81,230)( 82,229)( 83,231)( 84,232)( 85,225)( 86,226)( 87,228)
( 88,227)( 89,238)( 90,237)( 91,239)( 92,240)( 93,233)( 94,234)( 95,236)
( 96,235)( 97,246)( 98,245)( 99,247)(100,248)(101,241)(102,242)(103,244)
(104,243)(105,254)(106,253)(107,255)(108,256)(109,249)(110,250)(111,252)
(112,251)(113,262)(114,261)(115,263)(116,264)(117,257)(118,258)(119,260)
(120,259)(121,270)(122,269)(123,271)(124,272)(125,265)(126,266)(127,268)
(128,267)(129,278)(130,277)(131,279)(132,280)(133,273)(134,274)(135,276)
(136,275)(137,286)(138,285)(139,287)(140,288)(141,281)(142,282)(143,284)
(144,283);
s1 := Sym(288)!(  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)
( 13, 23)( 14, 24)( 15, 21)( 16, 22)( 25, 65)( 26, 66)( 27, 68)( 28, 67)
( 29, 71)( 30, 72)( 31, 69)( 32, 70)( 33, 57)( 34, 58)( 35, 60)( 36, 59)
( 37, 63)( 38, 64)( 39, 61)( 40, 62)( 41, 49)( 42, 50)( 43, 52)( 44, 51)
( 45, 55)( 46, 56)( 47, 53)( 48, 54)( 73, 74)( 77, 80)( 78, 79)( 81, 90)
( 82, 89)( 83, 91)( 84, 92)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 97,138)
( 98,137)( 99,139)(100,140)(101,144)(102,143)(103,142)(104,141)(105,130)
(106,129)(107,131)(108,132)(109,136)(110,135)(111,134)(112,133)(113,122)
(114,121)(115,123)(116,124)(117,128)(118,127)(119,126)(120,125)(145,218)
(146,217)(147,219)(148,220)(149,224)(150,223)(151,222)(152,221)(153,234)
(154,233)(155,235)(156,236)(157,240)(158,239)(159,238)(160,237)(161,226)
(162,225)(163,227)(164,228)(165,232)(166,231)(167,230)(168,229)(169,282)
(170,281)(171,283)(172,284)(173,288)(174,287)(175,286)(176,285)(177,274)
(178,273)(179,275)(180,276)(181,280)(182,279)(183,278)(184,277)(185,266)
(186,265)(187,267)(188,268)(189,272)(190,271)(191,270)(192,269)(193,258)
(194,257)(195,259)(196,260)(197,264)(198,263)(199,262)(200,261)(201,250)
(202,249)(203,251)(204,252)(205,256)(206,255)(207,254)(208,253)(209,242)
(210,241)(211,243)(212,244)(213,248)(214,247)(215,246)(216,245);
s2 := Sym(288)!(  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)
(  8, 28)(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)
( 24, 36)( 49, 65)( 50, 66)( 51, 71)( 52, 72)( 53, 70)( 54, 69)( 55, 67)
( 56, 68)( 59, 63)( 60, 64)( 61, 62)( 73, 97)( 74, 98)( 75,103)( 76,104)
( 77,102)( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)
( 85,118)( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)
( 93,110)( 94,109)( 95,107)( 96,108)(121,137)(122,138)(123,143)(124,144)
(125,142)(126,141)(127,139)(128,140)(131,135)(132,136)(133,134)(145,170)
(146,169)(147,176)(148,175)(149,173)(150,174)(151,172)(152,171)(153,186)
(154,185)(155,192)(156,191)(157,189)(158,190)(159,188)(160,187)(161,178)
(162,177)(163,184)(164,183)(165,181)(166,182)(167,180)(168,179)(193,210)
(194,209)(195,216)(196,215)(197,213)(198,214)(199,212)(200,211)(201,202)
(203,208)(204,207)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)
(223,244)(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)
(231,260)(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)
(239,252)(240,251)(265,282)(266,281)(267,288)(268,287)(269,285)(270,286)
(271,284)(272,283)(273,274)(275,280)(276,279);
poly := sub<Sym(288)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope