Questions?
See the FAQ
or other info.

Polytope of Type {2,9,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,9,4,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,155402)
Rank : 5
Schlafli Type : {2,9,4,4}
Number of vertices, edges, etc : 2, 18, 36, 16, 4
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,9,4,2}*576
   3-fold quotients : {2,3,4,4}*384b
   4-fold quotients : {2,9,2,4}*288, {2,9,4,2}*288
   6-fold quotients : {2,3,4,2}*192
   8-fold quotients : {2,9,2,2}*144
   12-fold quotients : {2,3,2,4}*96, {2,3,4,2}*96
   24-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 35)( 16, 37)( 17, 36)
( 18, 38)( 19, 31)( 20, 33)( 21, 32)( 22, 34)( 23, 27)( 24, 29)( 25, 28)
( 26, 30)( 40, 41)( 43, 47)( 44, 49)( 45, 48)( 46, 50)( 51, 71)( 52, 73)
( 53, 72)( 54, 74)( 55, 67)( 56, 69)( 57, 68)( 58, 70)( 59, 63)( 60, 65)
( 61, 64)( 62, 66)( 76, 77)( 79, 83)( 80, 85)( 81, 84)( 82, 86)( 87,107)
( 88,109)( 89,108)( 90,110)( 91,103)( 92,105)( 93,104)( 94,106)( 95, 99)
( 96,101)( 97,100)( 98,102)(112,113)(115,119)(116,121)(117,120)(118,122)
(123,143)(124,145)(125,144)(126,146)(127,139)(128,141)(129,140)(130,142)
(131,135)(132,137)(133,136)(134,138);;
s2 := (  3, 15)(  4, 16)(  5, 18)(  6, 17)(  7, 23)(  8, 24)(  9, 26)( 10, 25)
( 11, 19)( 12, 20)( 13, 22)( 14, 21)( 27, 35)( 28, 36)( 29, 38)( 30, 37)
( 33, 34)( 39, 51)( 40, 52)( 41, 54)( 42, 53)( 43, 59)( 44, 60)( 45, 62)
( 46, 61)( 47, 55)( 48, 56)( 49, 58)( 50, 57)( 63, 71)( 64, 72)( 65, 74)
( 66, 73)( 69, 70)( 75, 87)( 76, 88)( 77, 90)( 78, 89)( 79, 95)( 80, 96)
( 81, 98)( 82, 97)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 99,107)(100,108)
(101,110)(102,109)(105,106)(111,123)(112,124)(113,126)(114,125)(115,131)
(116,132)(117,134)(118,133)(119,127)(120,128)(121,130)(122,129)(135,143)
(136,144)(137,146)(138,145)(141,142);;
s3 := (  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)
( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)
( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)
( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)
( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75,114)( 76,113)( 77,112)( 78,111)
( 79,118)( 80,117)( 81,116)( 82,115)( 83,122)( 84,121)( 85,120)( 86,119)
( 87,126)( 88,125)( 89,124)( 90,123)( 91,130)( 92,129)( 93,128)( 94,127)
( 95,134)( 96,133)( 97,132)( 98,131)( 99,138)(100,137)(101,136)(102,135)
(103,142)(104,141)(105,140)(106,139)(107,146)(108,145)(109,144)(110,143);;
s4 := (  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)( 10, 82)
( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)( 18, 90)
( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)( 25, 97)( 26, 98)
( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)( 33,105)( 34,106)
( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)( 41,113)( 42,114)
( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)( 49,121)( 50,122)
( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)( 57,129)( 58,130)
( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)( 65,137)( 66,138)
( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)( 73,145)( 74,146);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 35)( 16, 37)
( 17, 36)( 18, 38)( 19, 31)( 20, 33)( 21, 32)( 22, 34)( 23, 27)( 24, 29)
( 25, 28)( 26, 30)( 40, 41)( 43, 47)( 44, 49)( 45, 48)( 46, 50)( 51, 71)
( 52, 73)( 53, 72)( 54, 74)( 55, 67)( 56, 69)( 57, 68)( 58, 70)( 59, 63)
( 60, 65)( 61, 64)( 62, 66)( 76, 77)( 79, 83)( 80, 85)( 81, 84)( 82, 86)
( 87,107)( 88,109)( 89,108)( 90,110)( 91,103)( 92,105)( 93,104)( 94,106)
( 95, 99)( 96,101)( 97,100)( 98,102)(112,113)(115,119)(116,121)(117,120)
(118,122)(123,143)(124,145)(125,144)(126,146)(127,139)(128,141)(129,140)
(130,142)(131,135)(132,137)(133,136)(134,138);
s2 := Sym(146)!(  3, 15)(  4, 16)(  5, 18)(  6, 17)(  7, 23)(  8, 24)(  9, 26)
( 10, 25)( 11, 19)( 12, 20)( 13, 22)( 14, 21)( 27, 35)( 28, 36)( 29, 38)
( 30, 37)( 33, 34)( 39, 51)( 40, 52)( 41, 54)( 42, 53)( 43, 59)( 44, 60)
( 45, 62)( 46, 61)( 47, 55)( 48, 56)( 49, 58)( 50, 57)( 63, 71)( 64, 72)
( 65, 74)( 66, 73)( 69, 70)( 75, 87)( 76, 88)( 77, 90)( 78, 89)( 79, 95)
( 80, 96)( 81, 98)( 82, 97)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 99,107)
(100,108)(101,110)(102,109)(105,106)(111,123)(112,124)(113,126)(114,125)
(115,131)(116,132)(117,134)(118,133)(119,127)(120,128)(121,130)(122,129)
(135,143)(136,144)(137,146)(138,145)(141,142);
s3 := Sym(146)!(  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)
( 16, 17)( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)
( 32, 33)( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)
( 48, 49)( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)
( 64, 65)( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75,114)( 76,113)( 77,112)
( 78,111)( 79,118)( 80,117)( 81,116)( 82,115)( 83,122)( 84,121)( 85,120)
( 86,119)( 87,126)( 88,125)( 89,124)( 90,123)( 91,130)( 92,129)( 93,128)
( 94,127)( 95,134)( 96,133)( 97,132)( 98,131)( 99,138)(100,137)(101,136)
(102,135)(103,142)(104,141)(105,140)(106,139)(107,146)(108,145)(109,144)
(110,143);
s4 := Sym(146)!(  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)
( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)
( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)( 25, 97)
( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)( 33,105)
( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)( 41,113)
( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)( 49,121)
( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)( 57,129)
( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)( 65,137)
( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)( 73,145)
( 74,146);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope