Questions?
See the FAQ
or other info.

# Polytope of Type {4,2,2,4,9}

Atlas Canonical Name : {4,2,2,4,9}*1152
if this polytope has a name.
Group : SmallGroup(1152,155402)
Rank : 6
Schlafli Type : {4,2,2,4,9}
Number of vertices, edges, etc : 4, 4, 2, 4, 18, 9
Order of s0s1s2s3s4s5 : 36
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,4,9}*576
3-fold quotients : {4,2,2,4,3}*384
6-fold quotients : {2,2,2,4,3}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := (5,6);;
s3 := ( 8,13)( 9,15)(10,17)(11,19)(14,24)(16,26)(20,30)(27,36)(29,38)(31,39)
(33,40)(35,41);;
s4 := ( 7, 8)( 9,12)(10,11)(13,21)(14,20)(15,22)(16,18)(17,19)(23,29)(24,30)
(25,27)(26,28)(31,37)(32,38)(33,35)(34,36)(39,42)(40,41);;
s5 := ( 7,12)( 8,10)( 9,20)(11,16)(13,17)(14,29)(15,30)(18,25)(19,26)(21,22)
(23,37)(24,38)(27,33)(28,34)(31,35)(32,42)(36,40)(39,41);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4,
s3*s4*s5*s4*s3*s4*s5*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(42)!(2,3);
s1 := Sym(42)!(1,2)(3,4);
s2 := Sym(42)!(5,6);
s3 := Sym(42)!( 8,13)( 9,15)(10,17)(11,19)(14,24)(16,26)(20,30)(27,36)(29,38)
(31,39)(33,40)(35,41);
s4 := Sym(42)!( 7, 8)( 9,12)(10,11)(13,21)(14,20)(15,22)(16,18)(17,19)(23,29)
(24,30)(25,27)(26,28)(31,37)(32,38)(33,35)(34,36)(39,42)(40,41);
s5 := Sym(42)!( 7,12)( 8,10)( 9,20)(11,16)(13,17)(14,29)(15,30)(18,25)(19,26)
(21,22)(23,37)(24,38)(27,33)(28,34)(31,35)(32,42)(36,40)(39,41);
poly := sub<Sym(42)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4, s3*s4*s5*s4*s3*s4*s5*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;

```

to this polytope