Questions?
See the FAQ
or other info.

Polytope of Type {18,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,155402)
Rank : 4
Schlafli Type : {18,4,2}
Number of vertices, edges, etc : 72, 144, 16, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,4,2}*576
   3-fold quotients : {6,4,2}*384b
   4-fold quotients : {18,4,2}*288a, {9,4,2}*288, {18,4,2}*288b, {18,4,2}*288c
   6-fold quotients : {6,4,2}*192
   8-fold quotients : {9,4,2}*144, {18,2,2}*144
   12-fold quotients : {6,4,2}*96a, {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   16-fold quotients : {9,2,2}*72
   24-fold quotients : {3,4,2}*48, {6,2,2}*48
   36-fold quotients : {2,4,2}*32
   48-fold quotients : {3,2,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 33)( 14, 35)( 15, 34)
( 16, 36)( 17, 29)( 18, 31)( 19, 30)( 20, 32)( 21, 25)( 22, 27)( 23, 26)
( 24, 28)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 69)( 50, 71)
( 51, 70)( 52, 72)( 53, 65)( 54, 67)( 55, 66)( 56, 68)( 57, 61)( 58, 63)
( 59, 62)( 60, 64)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)( 85,105)
( 86,107)( 87,106)( 88,108)( 89,101)( 90,103)( 91,102)( 92,104)( 93, 97)
( 94, 99)( 95, 98)( 96,100)(110,111)(113,117)(114,119)(115,118)(116,120)
(121,141)(122,143)(123,142)(124,144)(125,137)(126,139)(127,138)(128,140)
(129,133)(130,135)(131,134)(132,136);;
s1 := (  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 21)(  6, 22)(  7, 24)(  8, 23)
(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 25, 33)( 26, 34)( 27, 36)( 28, 35)
( 31, 32)( 37, 49)( 38, 50)( 39, 52)( 40, 51)( 41, 57)( 42, 58)( 43, 60)
( 44, 59)( 45, 53)( 46, 54)( 47, 56)( 48, 55)( 61, 69)( 62, 70)( 63, 72)
( 64, 71)( 67, 68)( 73,121)( 74,122)( 75,124)( 76,123)( 77,129)( 78,130)
( 79,132)( 80,131)( 81,125)( 82,126)( 83,128)( 84,127)( 85,109)( 86,110)
( 87,112)( 88,111)( 89,117)( 90,118)( 91,120)( 92,119)( 93,113)( 94,114)
( 95,116)( 96,115)( 97,141)( 98,142)( 99,144)(100,143)(101,137)(102,138)
(103,140)(104,139)(105,133)(106,134)(107,136)(108,135);;
s2 := (  1, 76)(  2, 75)(  3, 74)(  4, 73)(  5, 80)(  6, 79)(  7, 78)(  8, 77)
(  9, 84)( 10, 83)( 11, 82)( 12, 81)( 13, 88)( 14, 87)( 15, 86)( 16, 85)
( 17, 92)( 18, 91)( 19, 90)( 20, 89)( 21, 96)( 22, 95)( 23, 94)( 24, 93)
( 25,100)( 26, 99)( 27, 98)( 28, 97)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,108)( 34,107)( 35,106)( 36,105)( 37,112)( 38,111)( 39,110)( 40,109)
( 41,116)( 42,115)( 43,114)( 44,113)( 45,120)( 46,119)( 47,118)( 48,117)
( 49,124)( 50,123)( 51,122)( 52,121)( 53,128)( 54,127)( 55,126)( 56,125)
( 57,132)( 58,131)( 59,130)( 60,129)( 61,136)( 62,135)( 63,134)( 64,133)
( 65,140)( 66,139)( 67,138)( 68,137)( 69,144)( 70,143)( 71,142)( 72,141);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 33)( 14, 35)
( 15, 34)( 16, 36)( 17, 29)( 18, 31)( 19, 30)( 20, 32)( 21, 25)( 22, 27)
( 23, 26)( 24, 28)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 69)
( 50, 71)( 51, 70)( 52, 72)( 53, 65)( 54, 67)( 55, 66)( 56, 68)( 57, 61)
( 58, 63)( 59, 62)( 60, 64)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)
( 85,105)( 86,107)( 87,106)( 88,108)( 89,101)( 90,103)( 91,102)( 92,104)
( 93, 97)( 94, 99)( 95, 98)( 96,100)(110,111)(113,117)(114,119)(115,118)
(116,120)(121,141)(122,143)(123,142)(124,144)(125,137)(126,139)(127,138)
(128,140)(129,133)(130,135)(131,134)(132,136);
s1 := Sym(146)!(  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 21)(  6, 22)(  7, 24)
(  8, 23)(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 25, 33)( 26, 34)( 27, 36)
( 28, 35)( 31, 32)( 37, 49)( 38, 50)( 39, 52)( 40, 51)( 41, 57)( 42, 58)
( 43, 60)( 44, 59)( 45, 53)( 46, 54)( 47, 56)( 48, 55)( 61, 69)( 62, 70)
( 63, 72)( 64, 71)( 67, 68)( 73,121)( 74,122)( 75,124)( 76,123)( 77,129)
( 78,130)( 79,132)( 80,131)( 81,125)( 82,126)( 83,128)( 84,127)( 85,109)
( 86,110)( 87,112)( 88,111)( 89,117)( 90,118)( 91,120)( 92,119)( 93,113)
( 94,114)( 95,116)( 96,115)( 97,141)( 98,142)( 99,144)(100,143)(101,137)
(102,138)(103,140)(104,139)(105,133)(106,134)(107,136)(108,135);
s2 := Sym(146)!(  1, 76)(  2, 75)(  3, 74)(  4, 73)(  5, 80)(  6, 79)(  7, 78)
(  8, 77)(  9, 84)( 10, 83)( 11, 82)( 12, 81)( 13, 88)( 14, 87)( 15, 86)
( 16, 85)( 17, 92)( 18, 91)( 19, 90)( 20, 89)( 21, 96)( 22, 95)( 23, 94)
( 24, 93)( 25,100)( 26, 99)( 27, 98)( 28, 97)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,108)( 34,107)( 35,106)( 36,105)( 37,112)( 38,111)( 39,110)
( 40,109)( 41,116)( 42,115)( 43,114)( 44,113)( 45,120)( 46,119)( 47,118)
( 48,117)( 49,124)( 50,123)( 51,122)( 52,121)( 53,128)( 54,127)( 55,126)
( 56,125)( 57,132)( 58,131)( 59,130)( 60,129)( 61,136)( 62,135)( 63,134)
( 64,133)( 65,140)( 66,139)( 67,138)( 68,137)( 69,144)( 70,143)( 71,142)
( 72,141);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope