Questions?
See the FAQ
or other info.

# Polytope of Type {24,6,2}

Atlas Canonical Name : {24,6,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,155485)
Rank : 4
Schlafli Type : {24,6,2}
Number of vertices, edges, etc : 48, 144, 12, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {8,6,2}*384a
4-fold quotients : {12,6,2}*288d
12-fold quotients : {4,6,2}*96b
24-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,41)(18,42)
(19,43)(20,44)(21,48)(22,47)(23,46)(24,45)(25,33)(26,34)(27,35)(28,36)(29,40)
(30,39)(31,38)(32,37);;
s1 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)(10,24)
(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(35,36)(37,44)(38,43)(39,41)(40,42)
(45,46);;
s2 := ( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)(20,26)
(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(50)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,41)
(18,42)(19,43)(20,44)(21,48)(22,47)(23,46)(24,45)(25,33)(26,34)(27,35)(28,36)
(29,40)(30,39)(31,38)(32,37);
s1 := Sym(50)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)
(10,24)(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(35,36)(37,44)(38,43)(39,41)
(40,42)(45,46);
s2 := Sym(50)!( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)
(20,26)(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope