Questions?
See the FAQ
or other info.

Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*1152d
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 96, 288, 96
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,6}*384c
   4-fold quotients : {6,6}*288b
   6-fold quotients : {6,6}*192a
   8-fold quotients : {3,6}*144
   12-fold quotients : {6,6}*96
   16-fold quotients : {6,6}*72c
   24-fold quotients : {3,6}*48, {6,3}*48
   32-fold quotients : {3,6}*36
   48-fold quotients : {3,3}*24, {6,2}*24
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(17,33)(18,34)(19,36)(20,35)
(21,37)(22,38)(23,40)(24,39)(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)(31,44)
(32,43);;
s1 := ( 1,17)( 2,20)( 3,19)( 4,18)( 5,32)( 6,29)( 7,30)( 8,31)( 9,27)(10,26)
(11,25)(12,28)(13,22)(14,23)(15,24)(16,21)(34,36)(37,48)(38,45)(39,46)(40,47)
(41,43);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)(20,23)
(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(17,33)(18,34)(19,36)
(20,35)(21,37)(22,38)(23,40)(24,39)(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)
(31,44)(32,43);
s1 := Sym(48)!( 1,17)( 2,20)( 3,19)( 4,18)( 5,32)( 6,29)( 7,30)( 8,31)( 9,27)
(10,26)(11,25)(12,28)(13,22)(14,23)(15,24)(16,21)(34,36)(37,48)(38,45)(39,46)
(40,47)(41,43);
s2 := Sym(48)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)
(20,23)(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48);
poly := sub<Sym(48)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope