Questions?
See the FAQ
or other info.

Polytope of Type {3,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,12}*1152
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 4
Schlafli Type : {3,6,12}
Number of vertices, edges, etc : 4, 24, 96, 24
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,4}*384b
   4-fold quotients : {3,6,6}*288
   6-fold quotients : {3,3,4}*192
   12-fold quotients : {3,6,2}*96
   24-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);;
s1 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)(23,31)
(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,37)(18,38)(19,40)(20,39)
(21,33)(22,34)(23,36)(24,35)(25,41)(26,42)(27,44)(28,43)(29,45)(30,46)(31,48)
(32,47);;
s3 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,22)( 6,21)( 7,24)( 8,23)( 9,27)(10,28)
(11,25)(12,26)(13,32)(14,31)(15,30)(16,29)(37,38)(39,40)(41,43)(42,44)(45,48)
(46,47);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s3*s0*s2*s1*s2*s3*s2*s3*s1*s2*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);
s1 := Sym(48)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)
(23,31)(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44);
s2 := Sym(48)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,37)(18,38)(19,40)
(20,39)(21,33)(22,34)(23,36)(24,35)(25,41)(26,42)(27,44)(28,43)(29,45)(30,46)
(31,48)(32,47);
s3 := Sym(48)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,22)( 6,21)( 7,24)( 8,23)( 9,27)
(10,28)(11,25)(12,26)(13,32)(14,31)(15,30)(16,29)(37,38)(39,40)(41,43)(42,44)
(45,48)(46,47);
poly := sub<Sym(48)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s3*s0*s2*s1*s2*s3*s2*s3*s1*s2*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 >; 
 
References : None.
to this polytope