Questions?
See the FAQ
or other info.

Polytope of Type {4,24,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24,6}*1152i
if this polytope has a name.
Group : SmallGroup(1152,155800)
Rank : 4
Schlafli Type : {4,24,6}
Number of vertices, edges, etc : 4, 48, 72, 6
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,6}*576d
   3-fold quotients : {4,24,2}*384d
   4-fold quotients : {4,6,6}*288d
   6-fold quotients : {4,12,2}*192b
   12-fold quotients : {4,6,2}*96c
   24-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 39)(  2, 40)(  3, 37)(  4, 38)(  5, 43)(  6, 44)(  7, 41)(  8, 42)
(  9, 47)( 10, 48)( 11, 45)( 12, 46)( 13, 51)( 14, 52)( 15, 49)( 16, 50)
( 17, 55)( 18, 56)( 19, 53)( 20, 54)( 21, 59)( 22, 60)( 23, 57)( 24, 58)
( 25, 63)( 26, 64)( 27, 61)( 28, 62)( 29, 67)( 30, 68)( 31, 65)( 32, 66)
( 33, 71)( 34, 72)( 35, 69)( 36, 70)( 73,111)( 74,112)( 75,109)( 76,110)
( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)( 84,118)
( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)( 92,126)
( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)(100,134)
(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)(108,142)
(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)(152,186)
(153,191)(154,192)(155,189)(156,190)(157,195)(158,196)(159,193)(160,194)
(161,199)(162,200)(163,197)(164,198)(165,203)(166,204)(167,201)(168,202)
(169,207)(170,208)(171,205)(172,206)(173,211)(174,212)(175,209)(176,210)
(177,215)(178,216)(179,213)(180,214)(217,255)(218,256)(219,253)(220,254)
(221,259)(222,260)(223,257)(224,258)(225,263)(226,264)(227,261)(228,262)
(229,267)(230,268)(231,265)(232,266)(233,271)(234,272)(235,269)(236,270)
(237,275)(238,276)(239,273)(240,274)(241,279)(242,280)(243,277)(244,278)
(245,283)(246,284)(247,281)(248,282)(249,287)(250,288)(251,285)(252,286);;
s1 := (  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)( 17, 29)
( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 39, 40)
( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)( 54, 66)
( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 73,109)( 74,110)
( 75,112)( 76,111)( 77,113)( 78,114)( 79,116)( 80,115)( 81,117)( 82,118)
( 83,120)( 84,119)( 85,133)( 86,134)( 87,136)( 88,135)( 89,137)( 90,138)
( 91,140)( 92,139)( 93,141)( 94,142)( 95,144)( 96,143)( 97,121)( 98,122)
( 99,124)(100,123)(101,125)(102,126)(103,128)(104,127)(105,129)(106,130)
(107,132)(108,131)(145,217)(146,218)(147,220)(148,219)(149,221)(150,222)
(151,224)(152,223)(153,225)(154,226)(155,228)(156,227)(157,241)(158,242)
(159,244)(160,243)(161,245)(162,246)(163,248)(164,247)(165,249)(166,250)
(167,252)(168,251)(169,229)(170,230)(171,232)(172,231)(173,233)(174,234)
(175,236)(176,235)(177,237)(178,238)(179,240)(180,239)(181,253)(182,254)
(183,256)(184,255)(185,257)(186,258)(187,260)(188,259)(189,261)(190,262)
(191,264)(192,263)(193,277)(194,278)(195,280)(196,279)(197,281)(198,282)
(199,284)(200,283)(201,285)(202,286)(203,288)(204,287)(205,265)(206,266)
(207,268)(208,267)(209,269)(210,270)(211,272)(212,271)(213,273)(214,274)
(215,276)(216,275);;
s2 := (  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)(  8,166)
(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)( 16,146)
( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)( 24,150)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)( 32,178)
( 33,173)( 34,176)( 35,175)( 36,174)( 37,193)( 38,196)( 39,195)( 40,194)
( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)( 48,198)
( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)( 56,190)
( 57,185)( 58,188)( 59,187)( 60,186)( 61,205)( 62,208)( 63,207)( 64,206)
( 65,213)( 66,216)( 67,215)( 68,214)( 69,209)( 70,212)( 71,211)( 72,210)
( 73,265)( 74,268)( 75,267)( 76,266)( 77,273)( 78,276)( 79,275)( 80,274)
( 81,269)( 82,272)( 83,271)( 84,270)( 85,253)( 86,256)( 87,255)( 88,254)
( 89,261)( 90,264)( 91,263)( 92,262)( 93,257)( 94,260)( 95,259)( 96,258)
( 97,277)( 98,280)( 99,279)(100,278)(101,285)(102,288)(103,287)(104,286)
(105,281)(106,284)(107,283)(108,282)(109,229)(110,232)(111,231)(112,230)
(113,237)(114,240)(115,239)(116,238)(117,233)(118,236)(119,235)(120,234)
(121,217)(122,220)(123,219)(124,218)(125,225)(126,228)(127,227)(128,226)
(129,221)(130,224)(131,223)(132,222)(133,241)(134,244)(135,243)(136,242)
(137,249)(138,252)(139,251)(140,250)(141,245)(142,248)(143,247)(144,246);;
s3 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)( 13, 17)( 14, 18)( 15, 19)( 16, 20)
( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)( 40, 44)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)( 64, 68)
( 73, 77)( 74, 78)( 75, 79)( 76, 80)( 85, 89)( 86, 90)( 87, 91)( 88, 92)
( 97,101)( 98,102)( 99,103)(100,104)(109,113)(110,114)(111,115)(112,116)
(121,125)(122,126)(123,127)(124,128)(133,137)(134,138)(135,139)(136,140)
(145,149)(146,150)(147,151)(148,152)(157,161)(158,162)(159,163)(160,164)
(169,173)(170,174)(171,175)(172,176)(181,185)(182,186)(183,187)(184,188)
(193,197)(194,198)(195,199)(196,200)(205,209)(206,210)(207,211)(208,212)
(217,221)(218,222)(219,223)(220,224)(229,233)(230,234)(231,235)(232,236)
(241,245)(242,246)(243,247)(244,248)(253,257)(254,258)(255,259)(256,260)
(265,269)(266,270)(267,271)(268,272)(277,281)(278,282)(279,283)(280,284);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  1, 39)(  2, 40)(  3, 37)(  4, 38)(  5, 43)(  6, 44)(  7, 41)
(  8, 42)(  9, 47)( 10, 48)( 11, 45)( 12, 46)( 13, 51)( 14, 52)( 15, 49)
( 16, 50)( 17, 55)( 18, 56)( 19, 53)( 20, 54)( 21, 59)( 22, 60)( 23, 57)
( 24, 58)( 25, 63)( 26, 64)( 27, 61)( 28, 62)( 29, 67)( 30, 68)( 31, 65)
( 32, 66)( 33, 71)( 34, 72)( 35, 69)( 36, 70)( 73,111)( 74,112)( 75,109)
( 76,110)( 77,115)( 78,116)( 79,113)( 80,114)( 81,119)( 82,120)( 83,117)
( 84,118)( 85,123)( 86,124)( 87,121)( 88,122)( 89,127)( 90,128)( 91,125)
( 92,126)( 93,131)( 94,132)( 95,129)( 96,130)( 97,135)( 98,136)( 99,133)
(100,134)(101,139)(102,140)(103,137)(104,138)(105,143)(106,144)(107,141)
(108,142)(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)
(152,186)(153,191)(154,192)(155,189)(156,190)(157,195)(158,196)(159,193)
(160,194)(161,199)(162,200)(163,197)(164,198)(165,203)(166,204)(167,201)
(168,202)(169,207)(170,208)(171,205)(172,206)(173,211)(174,212)(175,209)
(176,210)(177,215)(178,216)(179,213)(180,214)(217,255)(218,256)(219,253)
(220,254)(221,259)(222,260)(223,257)(224,258)(225,263)(226,264)(227,261)
(228,262)(229,267)(230,268)(231,265)(232,266)(233,271)(234,272)(235,269)
(236,270)(237,275)(238,276)(239,273)(240,274)(241,279)(242,280)(243,277)
(244,278)(245,283)(246,284)(247,281)(248,282)(249,287)(250,288)(251,285)
(252,286);
s1 := Sym(288)!(  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)
( 39, 40)( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)
( 54, 66)( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 73,109)
( 74,110)( 75,112)( 76,111)( 77,113)( 78,114)( 79,116)( 80,115)( 81,117)
( 82,118)( 83,120)( 84,119)( 85,133)( 86,134)( 87,136)( 88,135)( 89,137)
( 90,138)( 91,140)( 92,139)( 93,141)( 94,142)( 95,144)( 96,143)( 97,121)
( 98,122)( 99,124)(100,123)(101,125)(102,126)(103,128)(104,127)(105,129)
(106,130)(107,132)(108,131)(145,217)(146,218)(147,220)(148,219)(149,221)
(150,222)(151,224)(152,223)(153,225)(154,226)(155,228)(156,227)(157,241)
(158,242)(159,244)(160,243)(161,245)(162,246)(163,248)(164,247)(165,249)
(166,250)(167,252)(168,251)(169,229)(170,230)(171,232)(172,231)(173,233)
(174,234)(175,236)(176,235)(177,237)(178,238)(179,240)(180,239)(181,253)
(182,254)(183,256)(184,255)(185,257)(186,258)(187,260)(188,259)(189,261)
(190,262)(191,264)(192,263)(193,277)(194,278)(195,280)(196,279)(197,281)
(198,282)(199,284)(200,283)(201,285)(202,286)(203,288)(204,287)(205,265)
(206,266)(207,268)(208,267)(209,269)(210,270)(211,272)(212,271)(213,273)
(214,274)(215,276)(216,275);
s2 := Sym(288)!(  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)
(  8,166)(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)
( 16,146)( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)
( 24,150)( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)
( 32,178)( 33,173)( 34,176)( 35,175)( 36,174)( 37,193)( 38,196)( 39,195)
( 40,194)( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)
( 48,198)( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)
( 56,190)( 57,185)( 58,188)( 59,187)( 60,186)( 61,205)( 62,208)( 63,207)
( 64,206)( 65,213)( 66,216)( 67,215)( 68,214)( 69,209)( 70,212)( 71,211)
( 72,210)( 73,265)( 74,268)( 75,267)( 76,266)( 77,273)( 78,276)( 79,275)
( 80,274)( 81,269)( 82,272)( 83,271)( 84,270)( 85,253)( 86,256)( 87,255)
( 88,254)( 89,261)( 90,264)( 91,263)( 92,262)( 93,257)( 94,260)( 95,259)
( 96,258)( 97,277)( 98,280)( 99,279)(100,278)(101,285)(102,288)(103,287)
(104,286)(105,281)(106,284)(107,283)(108,282)(109,229)(110,232)(111,231)
(112,230)(113,237)(114,240)(115,239)(116,238)(117,233)(118,236)(119,235)
(120,234)(121,217)(122,220)(123,219)(124,218)(125,225)(126,228)(127,227)
(128,226)(129,221)(130,224)(131,223)(132,222)(133,241)(134,244)(135,243)
(136,242)(137,249)(138,252)(139,251)(140,250)(141,245)(142,248)(143,247)
(144,246);
s3 := Sym(288)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)( 13, 17)( 14, 18)( 15, 19)
( 16, 20)( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)
( 40, 44)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)
( 64, 68)( 73, 77)( 74, 78)( 75, 79)( 76, 80)( 85, 89)( 86, 90)( 87, 91)
( 88, 92)( 97,101)( 98,102)( 99,103)(100,104)(109,113)(110,114)(111,115)
(112,116)(121,125)(122,126)(123,127)(124,128)(133,137)(134,138)(135,139)
(136,140)(145,149)(146,150)(147,151)(148,152)(157,161)(158,162)(159,163)
(160,164)(169,173)(170,174)(171,175)(172,176)(181,185)(182,186)(183,187)
(184,188)(193,197)(194,198)(195,199)(196,200)(205,209)(206,210)(207,211)
(208,212)(217,221)(218,222)(219,223)(220,224)(229,233)(230,234)(231,235)
(232,236)(241,245)(242,246)(243,247)(244,248)(253,257)(254,258)(255,259)
(256,260)(265,269)(266,270)(267,271)(268,272)(277,281)(278,282)(279,283)
(280,284);
poly := sub<Sym(288)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0 >; 
 
References : None.
to this polytope