Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,4,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,4,9}*1152
if this polytope has a name.
Group : SmallGroup(1152,157448)
Rank : 6
Schlafli Type : {2,2,2,4,9}
Number of vertices, edges, etc : 2, 2, 2, 8, 36, 18
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,4,9}*576
   3-fold quotients : {2,2,2,4,3}*384
   4-fold quotients : {2,2,2,2,9}*288
   6-fold quotients : {2,2,2,4,3}*192
   12-fold quotients : {2,2,2,2,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 7,44)( 8,43)( 9,46)(10,45)(11,48)(12,47)(13,50)(14,49)(15,52)(16,51)
(17,54)(18,53)(19,56)(20,55)(21,58)(22,57)(23,60)(24,59)(25,62)(26,61)(27,64)
(28,63)(29,66)(30,65)(31,68)(32,67)(33,70)(34,69)(35,72)(36,71)(37,74)(38,73)
(39,76)(40,75)(41,78)(42,77);;
s4 := ( 8, 9)(11,15)(12,17)(13,16)(14,18)(19,35)(20,37)(21,36)(22,38)(23,31)
(24,33)(25,32)(26,34)(27,39)(28,41)(29,40)(30,42)(44,45)(47,51)(48,53)(49,52)
(50,54)(55,71)(56,73)(57,72)(58,74)(59,67)(60,69)(61,68)(62,70)(63,75)(64,77)
(65,76)(66,78);;
s5 := ( 7,19)( 8,20)( 9,22)(10,21)(11,27)(12,28)(13,30)(14,29)(15,23)(16,24)
(17,26)(18,25)(31,35)(32,36)(33,38)(34,37)(41,42)(43,55)(44,56)(45,58)(46,57)
(47,63)(48,64)(49,66)(50,65)(51,59)(52,60)(53,62)(54,61)(67,71)(68,72)(69,74)
(70,73)(77,78);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s5*s4*s3*s4*s5*s4*s5*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!(3,4);
s2 := Sym(78)!(5,6);
s3 := Sym(78)!( 7,44)( 8,43)( 9,46)(10,45)(11,48)(12,47)(13,50)(14,49)(15,52)
(16,51)(17,54)(18,53)(19,56)(20,55)(21,58)(22,57)(23,60)(24,59)(25,62)(26,61)
(27,64)(28,63)(29,66)(30,65)(31,68)(32,67)(33,70)(34,69)(35,72)(36,71)(37,74)
(38,73)(39,76)(40,75)(41,78)(42,77);
s4 := Sym(78)!( 8, 9)(11,15)(12,17)(13,16)(14,18)(19,35)(20,37)(21,36)(22,38)
(23,31)(24,33)(25,32)(26,34)(27,39)(28,41)(29,40)(30,42)(44,45)(47,51)(48,53)
(49,52)(50,54)(55,71)(56,73)(57,72)(58,74)(59,67)(60,69)(61,68)(62,70)(63,75)
(64,77)(65,76)(66,78);
s5 := Sym(78)!( 7,19)( 8,20)( 9,22)(10,21)(11,27)(12,28)(13,30)(14,29)(15,23)
(16,24)(17,26)(18,25)(31,35)(32,36)(33,38)(34,37)(41,42)(43,55)(44,56)(45,58)
(46,57)(47,63)(48,64)(49,66)(50,65)(51,59)(52,60)(53,62)(54,61)(67,71)(68,72)
(69,74)(70,73)(77,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s5*s4*s3*s4*s5*s4*s5*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope