Questions?
See the FAQ
or other info.

Polytope of Type {2,4,9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,9,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157449)
Rank : 5
Schlafli Type : {2,4,9,4}
Number of vertices, edges, etc : 2, 8, 36, 36, 4
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,9,4}*576
   3-fold quotients : {2,4,3,4}*384b
   4-fold quotients : {2,2,9,4}*288
   6-fold quotients : {2,4,3,4}*192
   12-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,155)(  4,156)(  5,157)(  6,158)(  7,159)(  8,160)(  9,161)( 10,162)
( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)( 16,152)( 17,153)( 18,154)
( 19,171)( 20,172)( 21,173)( 22,174)( 23,175)( 24,176)( 25,177)( 26,178)
( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)( 32,168)( 33,169)( 34,170)
( 35,187)( 36,188)( 37,189)( 38,190)( 39,191)( 40,192)( 41,193)( 42,194)
( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)( 48,184)( 49,185)( 50,186)
( 51,203)( 52,204)( 53,205)( 54,206)( 55,207)( 56,208)( 57,209)( 58,210)
( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)( 64,200)( 65,201)( 66,202)
( 67,219)( 68,220)( 69,221)( 70,222)( 71,223)( 72,224)( 73,225)( 74,226)
( 75,211)( 76,212)( 77,213)( 78,214)( 79,215)( 80,216)( 81,217)( 82,218)
( 83,235)( 84,236)( 85,237)( 86,238)( 87,239)( 88,240)( 89,241)( 90,242)
( 91,227)( 92,228)( 93,229)( 94,230)( 95,231)( 96,232)( 97,233)( 98,234)
( 99,251)(100,252)(101,253)(102,254)(103,255)(104,256)(105,257)(106,258)
(107,243)(108,244)(109,245)(110,246)(111,247)(112,248)(113,249)(114,250)
(115,267)(116,268)(117,269)(118,270)(119,271)(120,272)(121,273)(122,274)
(123,259)(124,260)(125,261)(126,262)(127,263)(128,264)(129,265)(130,266)
(131,283)(132,284)(133,285)(134,286)(135,287)(136,288)(137,289)(138,290)
(139,275)(140,276)(141,277)(142,278)(143,279)(144,280)(145,281)(146,282);;
s2 := (  3, 51)(  4, 54)(  5, 53)(  6, 52)(  7, 59)(  8, 62)(  9, 61)( 10, 60)
( 11, 55)( 12, 58)( 13, 57)( 14, 56)( 15, 63)( 16, 66)( 17, 65)( 18, 64)
( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 91)( 24, 94)( 25, 93)( 26, 92)
( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)( 34, 96)
( 35, 67)( 36, 70)( 37, 69)( 38, 68)( 39, 75)( 40, 78)( 41, 77)( 42, 76)
( 43, 71)( 44, 74)( 45, 73)( 46, 72)( 47, 79)( 48, 82)( 49, 81)( 50, 80)
( 99,115)(100,118)(101,117)(102,116)(103,123)(104,126)(105,125)(106,124)
(107,119)(108,122)(109,121)(110,120)(111,127)(112,130)(113,129)(114,128)
(132,134)(135,139)(136,142)(137,141)(138,140)(144,146)(147,195)(148,198)
(149,197)(150,196)(151,203)(152,206)(153,205)(154,204)(155,199)(156,202)
(157,201)(158,200)(159,207)(160,210)(161,209)(162,208)(163,227)(164,230)
(165,229)(166,228)(167,235)(168,238)(169,237)(170,236)(171,231)(172,234)
(173,233)(174,232)(175,239)(176,242)(177,241)(178,240)(179,211)(180,214)
(181,213)(182,212)(183,219)(184,222)(185,221)(186,220)(187,215)(188,218)
(189,217)(190,216)(191,223)(192,226)(193,225)(194,224)(243,259)(244,262)
(245,261)(246,260)(247,267)(248,270)(249,269)(250,268)(251,263)(252,266)
(253,265)(254,264)(255,271)(256,274)(257,273)(258,272)(276,278)(279,283)
(280,286)(281,285)(282,284)(288,290);;
s3 := (  5,  6)(  7, 15)(  8, 16)(  9, 18)( 10, 17)( 13, 14)( 19, 35)( 20, 36)
( 21, 38)( 22, 37)( 23, 47)( 24, 48)( 25, 50)( 26, 49)( 27, 43)( 28, 44)
( 29, 46)( 30, 45)( 31, 39)( 32, 40)( 33, 42)( 34, 41)( 51,115)( 52,116)
( 53,118)( 54,117)( 55,127)( 56,128)( 57,130)( 58,129)( 59,123)( 60,124)
( 61,126)( 62,125)( 63,119)( 64,120)( 65,122)( 66,121)( 67, 99)( 68,100)
( 69,102)( 70,101)( 71,111)( 72,112)( 73,114)( 74,113)( 75,107)( 76,108)
( 77,110)( 78,109)( 79,103)( 80,104)( 81,106)( 82,105)( 83,131)( 84,132)
( 85,134)( 86,133)( 87,143)( 88,144)( 89,146)( 90,145)( 91,139)( 92,140)
( 93,142)( 94,141)( 95,135)( 96,136)( 97,138)( 98,137)(149,150)(151,159)
(152,160)(153,162)(154,161)(157,158)(163,179)(164,180)(165,182)(166,181)
(167,191)(168,192)(169,194)(170,193)(171,187)(172,188)(173,190)(174,189)
(175,183)(176,184)(177,186)(178,185)(195,259)(196,260)(197,262)(198,261)
(199,271)(200,272)(201,274)(202,273)(203,267)(204,268)(205,270)(206,269)
(207,263)(208,264)(209,266)(210,265)(211,243)(212,244)(213,246)(214,245)
(215,255)(216,256)(217,258)(218,257)(219,251)(220,252)(221,254)(222,253)
(223,247)(224,248)(225,250)(226,249)(227,275)(228,276)(229,278)(230,277)
(231,287)(232,288)(233,290)(234,289)(235,283)(236,284)(237,286)(238,285)
(239,279)(240,280)(241,282)(242,281);;
s4 := (  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)(224,226)
(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)(240,242)
(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)(256,258)
(259,261)(260,262)(263,265)(264,266)(267,269)(268,270)(271,273)(272,274)
(275,277)(276,278)(279,281)(280,282)(283,285)(284,286)(287,289)(288,290);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(290)!(1,2);
s1 := Sym(290)!(  3,155)(  4,156)(  5,157)(  6,158)(  7,159)(  8,160)(  9,161)
( 10,162)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)( 16,152)( 17,153)
( 18,154)( 19,171)( 20,172)( 21,173)( 22,174)( 23,175)( 24,176)( 25,177)
( 26,178)( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)( 32,168)( 33,169)
( 34,170)( 35,187)( 36,188)( 37,189)( 38,190)( 39,191)( 40,192)( 41,193)
( 42,194)( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)( 48,184)( 49,185)
( 50,186)( 51,203)( 52,204)( 53,205)( 54,206)( 55,207)( 56,208)( 57,209)
( 58,210)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)( 64,200)( 65,201)
( 66,202)( 67,219)( 68,220)( 69,221)( 70,222)( 71,223)( 72,224)( 73,225)
( 74,226)( 75,211)( 76,212)( 77,213)( 78,214)( 79,215)( 80,216)( 81,217)
( 82,218)( 83,235)( 84,236)( 85,237)( 86,238)( 87,239)( 88,240)( 89,241)
( 90,242)( 91,227)( 92,228)( 93,229)( 94,230)( 95,231)( 96,232)( 97,233)
( 98,234)( 99,251)(100,252)(101,253)(102,254)(103,255)(104,256)(105,257)
(106,258)(107,243)(108,244)(109,245)(110,246)(111,247)(112,248)(113,249)
(114,250)(115,267)(116,268)(117,269)(118,270)(119,271)(120,272)(121,273)
(122,274)(123,259)(124,260)(125,261)(126,262)(127,263)(128,264)(129,265)
(130,266)(131,283)(132,284)(133,285)(134,286)(135,287)(136,288)(137,289)
(138,290)(139,275)(140,276)(141,277)(142,278)(143,279)(144,280)(145,281)
(146,282);
s2 := Sym(290)!(  3, 51)(  4, 54)(  5, 53)(  6, 52)(  7, 59)(  8, 62)(  9, 61)
( 10, 60)( 11, 55)( 12, 58)( 13, 57)( 14, 56)( 15, 63)( 16, 66)( 17, 65)
( 18, 64)( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 91)( 24, 94)( 25, 93)
( 26, 92)( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)
( 34, 96)( 35, 67)( 36, 70)( 37, 69)( 38, 68)( 39, 75)( 40, 78)( 41, 77)
( 42, 76)( 43, 71)( 44, 74)( 45, 73)( 46, 72)( 47, 79)( 48, 82)( 49, 81)
( 50, 80)( 99,115)(100,118)(101,117)(102,116)(103,123)(104,126)(105,125)
(106,124)(107,119)(108,122)(109,121)(110,120)(111,127)(112,130)(113,129)
(114,128)(132,134)(135,139)(136,142)(137,141)(138,140)(144,146)(147,195)
(148,198)(149,197)(150,196)(151,203)(152,206)(153,205)(154,204)(155,199)
(156,202)(157,201)(158,200)(159,207)(160,210)(161,209)(162,208)(163,227)
(164,230)(165,229)(166,228)(167,235)(168,238)(169,237)(170,236)(171,231)
(172,234)(173,233)(174,232)(175,239)(176,242)(177,241)(178,240)(179,211)
(180,214)(181,213)(182,212)(183,219)(184,222)(185,221)(186,220)(187,215)
(188,218)(189,217)(190,216)(191,223)(192,226)(193,225)(194,224)(243,259)
(244,262)(245,261)(246,260)(247,267)(248,270)(249,269)(250,268)(251,263)
(252,266)(253,265)(254,264)(255,271)(256,274)(257,273)(258,272)(276,278)
(279,283)(280,286)(281,285)(282,284)(288,290);
s3 := Sym(290)!(  5,  6)(  7, 15)(  8, 16)(  9, 18)( 10, 17)( 13, 14)( 19, 35)
( 20, 36)( 21, 38)( 22, 37)( 23, 47)( 24, 48)( 25, 50)( 26, 49)( 27, 43)
( 28, 44)( 29, 46)( 30, 45)( 31, 39)( 32, 40)( 33, 42)( 34, 41)( 51,115)
( 52,116)( 53,118)( 54,117)( 55,127)( 56,128)( 57,130)( 58,129)( 59,123)
( 60,124)( 61,126)( 62,125)( 63,119)( 64,120)( 65,122)( 66,121)( 67, 99)
( 68,100)( 69,102)( 70,101)( 71,111)( 72,112)( 73,114)( 74,113)( 75,107)
( 76,108)( 77,110)( 78,109)( 79,103)( 80,104)( 81,106)( 82,105)( 83,131)
( 84,132)( 85,134)( 86,133)( 87,143)( 88,144)( 89,146)( 90,145)( 91,139)
( 92,140)( 93,142)( 94,141)( 95,135)( 96,136)( 97,138)( 98,137)(149,150)
(151,159)(152,160)(153,162)(154,161)(157,158)(163,179)(164,180)(165,182)
(166,181)(167,191)(168,192)(169,194)(170,193)(171,187)(172,188)(173,190)
(174,189)(175,183)(176,184)(177,186)(178,185)(195,259)(196,260)(197,262)
(198,261)(199,271)(200,272)(201,274)(202,273)(203,267)(204,268)(205,270)
(206,269)(207,263)(208,264)(209,266)(210,265)(211,243)(212,244)(213,246)
(214,245)(215,255)(216,256)(217,258)(218,257)(219,251)(220,252)(221,254)
(222,253)(223,247)(224,248)(225,250)(226,249)(227,275)(228,276)(229,278)
(230,277)(231,287)(232,288)(233,290)(234,289)(235,283)(236,284)(237,286)
(238,285)(239,279)(240,280)(241,282)(242,281);
s4 := Sym(290)!(  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)
(224,226)(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)
(240,242)(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)
(256,258)(259,261)(260,262)(263,265)(264,266)(267,269)(268,270)(271,273)
(272,274)(275,277)(276,278)(279,281)(280,282)(283,285)(284,286)(287,289)
(288,290);
poly := sub<Sym(290)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope