Questions?
See the FAQ
or other info.

Polytope of Type {4,9,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,9,4,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,157449)
Rank : 5
Schlafli Type : {4,9,4,2}
Number of vertices, edges, etc : 4, 36, 36, 8, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,9,4,2}*576
   3-fold quotients : {4,3,4,2}*384a
   4-fold quotients : {4,9,2,2}*288
   6-fold quotients : {4,3,4,2}*192
   12-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)
(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)
(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)
(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)
(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)
(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)
(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)
(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)
(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)
(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288);;
s1 := (  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 57)(  6, 60)(  7, 59)(  8, 58)
(  9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 61)( 14, 64)( 15, 63)( 16, 62)
( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 89)( 22, 92)( 23, 91)( 24, 90)
( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)( 32, 94)
( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 73)( 38, 76)( 39, 75)( 40, 74)
( 41, 69)( 42, 72)( 43, 71)( 44, 70)( 45, 77)( 46, 80)( 47, 79)( 48, 78)
( 97,113)( 98,116)( 99,115)(100,114)(101,121)(102,124)(103,123)(104,122)
(105,117)(106,120)(107,119)(108,118)(109,125)(110,128)(111,127)(112,126)
(130,132)(133,137)(134,140)(135,139)(136,138)(142,144)(145,193)(146,196)
(147,195)(148,194)(149,201)(150,204)(151,203)(152,202)(153,197)(154,200)
(155,199)(156,198)(157,205)(158,208)(159,207)(160,206)(161,225)(162,228)
(163,227)(164,226)(165,233)(166,236)(167,235)(168,234)(169,229)(170,232)
(171,231)(172,230)(173,237)(174,240)(175,239)(176,238)(177,209)(178,212)
(179,211)(180,210)(181,217)(182,220)(183,219)(184,218)(185,213)(186,216)
(187,215)(188,214)(189,221)(190,224)(191,223)(192,222)(241,257)(242,260)
(243,259)(244,258)(245,265)(246,268)(247,267)(248,266)(249,261)(250,264)
(251,263)(252,262)(253,269)(254,272)(255,271)(256,270)(274,276)(277,281)
(278,284)(279,283)(280,282)(286,288);;
s2 := (  3,  4)(  5, 13)(  6, 14)(  7, 16)(  8, 15)( 11, 12)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 45)( 22, 46)( 23, 48)( 24, 47)( 25, 41)( 26, 42)
( 27, 44)( 28, 43)( 29, 37)( 30, 38)( 31, 40)( 32, 39)( 49,113)( 50,114)
( 51,116)( 52,115)( 53,125)( 54,126)( 55,128)( 56,127)( 57,121)( 58,122)
( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)( 64,119)( 65, 97)( 66, 98)
( 67,100)( 68, 99)( 69,109)( 70,110)( 71,112)( 72,111)( 73,105)( 74,106)
( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)( 80,103)( 81,129)( 82,130)
( 83,132)( 84,131)( 85,141)( 86,142)( 87,144)( 88,143)( 89,137)( 90,138)
( 91,140)( 92,139)( 93,133)( 94,134)( 95,136)( 96,135)(147,148)(149,157)
(150,158)(151,160)(152,159)(155,156)(161,177)(162,178)(163,180)(164,179)
(165,189)(166,190)(167,192)(168,191)(169,185)(170,186)(171,188)(172,187)
(173,181)(174,182)(175,184)(176,183)(193,257)(194,258)(195,260)(196,259)
(197,269)(198,270)(199,272)(200,271)(201,265)(202,266)(203,268)(204,267)
(205,261)(206,262)(207,264)(208,263)(209,241)(210,242)(211,244)(212,243)
(213,253)(214,254)(215,256)(216,255)(217,249)(218,250)(219,252)(220,251)
(221,245)(222,246)(223,248)(224,247)(225,273)(226,274)(227,276)(228,275)
(229,285)(230,286)(231,288)(232,287)(233,281)(234,282)(235,284)(236,283)
(237,277)(238,278)(239,280)(240,279);;
s3 := (  1,147)(  2,148)(  3,145)(  4,146)(  5,151)(  6,152)(  7,149)(  8,150)
(  9,155)( 10,156)( 11,153)( 12,154)( 13,159)( 14,160)( 15,157)( 16,158)
( 17,163)( 18,164)( 19,161)( 20,162)( 21,167)( 22,168)( 23,165)( 24,166)
( 25,171)( 26,172)( 27,169)( 28,170)( 29,175)( 30,176)( 31,173)( 32,174)
( 33,179)( 34,180)( 35,177)( 36,178)( 37,183)( 38,184)( 39,181)( 40,182)
( 41,187)( 42,188)( 43,185)( 44,186)( 45,191)( 46,192)( 47,189)( 48,190)
( 49,195)( 50,196)( 51,193)( 52,194)( 53,199)( 54,200)( 55,197)( 56,198)
( 57,203)( 58,204)( 59,201)( 60,202)( 61,207)( 62,208)( 63,205)( 64,206)
( 65,211)( 66,212)( 67,209)( 68,210)( 69,215)( 70,216)( 71,213)( 72,214)
( 73,219)( 74,220)( 75,217)( 76,218)( 77,223)( 78,224)( 79,221)( 80,222)
( 81,227)( 82,228)( 83,225)( 84,226)( 85,231)( 86,232)( 87,229)( 88,230)
( 89,235)( 90,236)( 91,233)( 92,234)( 93,239)( 94,240)( 95,237)( 96,238)
( 97,243)( 98,244)( 99,241)(100,242)(101,247)(102,248)(103,245)(104,246)
(105,251)(106,252)(107,249)(108,250)(109,255)(110,256)(111,253)(112,254)
(113,259)(114,260)(115,257)(116,258)(117,263)(118,264)(119,261)(120,262)
(121,267)(122,268)(123,265)(124,266)(125,271)(126,272)(127,269)(128,270)
(129,275)(130,276)(131,273)(132,274)(133,279)(134,280)(135,277)(136,278)
(137,283)(138,284)(139,281)(140,282)(141,287)(142,288)(143,285)(144,286);;
s4 := (289,290);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(290)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)
(  8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144)(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)
(152,160)(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)
(168,176)(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)
(184,192)(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)
(200,208)(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)
(216,224)(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)
(232,240)(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)
(248,256)(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)
(264,272)(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)
(280,288);
s1 := Sym(290)!(  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 57)(  6, 60)(  7, 59)
(  8, 58)(  9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 61)( 14, 64)( 15, 63)
( 16, 62)( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 89)( 22, 92)( 23, 91)
( 24, 90)( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)
( 32, 94)( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 73)( 38, 76)( 39, 75)
( 40, 74)( 41, 69)( 42, 72)( 43, 71)( 44, 70)( 45, 77)( 46, 80)( 47, 79)
( 48, 78)( 97,113)( 98,116)( 99,115)(100,114)(101,121)(102,124)(103,123)
(104,122)(105,117)(106,120)(107,119)(108,118)(109,125)(110,128)(111,127)
(112,126)(130,132)(133,137)(134,140)(135,139)(136,138)(142,144)(145,193)
(146,196)(147,195)(148,194)(149,201)(150,204)(151,203)(152,202)(153,197)
(154,200)(155,199)(156,198)(157,205)(158,208)(159,207)(160,206)(161,225)
(162,228)(163,227)(164,226)(165,233)(166,236)(167,235)(168,234)(169,229)
(170,232)(171,231)(172,230)(173,237)(174,240)(175,239)(176,238)(177,209)
(178,212)(179,211)(180,210)(181,217)(182,220)(183,219)(184,218)(185,213)
(186,216)(187,215)(188,214)(189,221)(190,224)(191,223)(192,222)(241,257)
(242,260)(243,259)(244,258)(245,265)(246,268)(247,267)(248,266)(249,261)
(250,264)(251,263)(252,262)(253,269)(254,272)(255,271)(256,270)(274,276)
(277,281)(278,284)(279,283)(280,282)(286,288);
s2 := Sym(290)!(  3,  4)(  5, 13)(  6, 14)(  7, 16)(  8, 15)( 11, 12)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 45)( 22, 46)( 23, 48)( 24, 47)( 25, 41)
( 26, 42)( 27, 44)( 28, 43)( 29, 37)( 30, 38)( 31, 40)( 32, 39)( 49,113)
( 50,114)( 51,116)( 52,115)( 53,125)( 54,126)( 55,128)( 56,127)( 57,121)
( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)( 64,119)( 65, 97)
( 66, 98)( 67,100)( 68, 99)( 69,109)( 70,110)( 71,112)( 72,111)( 73,105)
( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)( 80,103)( 81,129)
( 82,130)( 83,132)( 84,131)( 85,141)( 86,142)( 87,144)( 88,143)( 89,137)
( 90,138)( 91,140)( 92,139)( 93,133)( 94,134)( 95,136)( 96,135)(147,148)
(149,157)(150,158)(151,160)(152,159)(155,156)(161,177)(162,178)(163,180)
(164,179)(165,189)(166,190)(167,192)(168,191)(169,185)(170,186)(171,188)
(172,187)(173,181)(174,182)(175,184)(176,183)(193,257)(194,258)(195,260)
(196,259)(197,269)(198,270)(199,272)(200,271)(201,265)(202,266)(203,268)
(204,267)(205,261)(206,262)(207,264)(208,263)(209,241)(210,242)(211,244)
(212,243)(213,253)(214,254)(215,256)(216,255)(217,249)(218,250)(219,252)
(220,251)(221,245)(222,246)(223,248)(224,247)(225,273)(226,274)(227,276)
(228,275)(229,285)(230,286)(231,288)(232,287)(233,281)(234,282)(235,284)
(236,283)(237,277)(238,278)(239,280)(240,279);
s3 := Sym(290)!(  1,147)(  2,148)(  3,145)(  4,146)(  5,151)(  6,152)(  7,149)
(  8,150)(  9,155)( 10,156)( 11,153)( 12,154)( 13,159)( 14,160)( 15,157)
( 16,158)( 17,163)( 18,164)( 19,161)( 20,162)( 21,167)( 22,168)( 23,165)
( 24,166)( 25,171)( 26,172)( 27,169)( 28,170)( 29,175)( 30,176)( 31,173)
( 32,174)( 33,179)( 34,180)( 35,177)( 36,178)( 37,183)( 38,184)( 39,181)
( 40,182)( 41,187)( 42,188)( 43,185)( 44,186)( 45,191)( 46,192)( 47,189)
( 48,190)( 49,195)( 50,196)( 51,193)( 52,194)( 53,199)( 54,200)( 55,197)
( 56,198)( 57,203)( 58,204)( 59,201)( 60,202)( 61,207)( 62,208)( 63,205)
( 64,206)( 65,211)( 66,212)( 67,209)( 68,210)( 69,215)( 70,216)( 71,213)
( 72,214)( 73,219)( 74,220)( 75,217)( 76,218)( 77,223)( 78,224)( 79,221)
( 80,222)( 81,227)( 82,228)( 83,225)( 84,226)( 85,231)( 86,232)( 87,229)
( 88,230)( 89,235)( 90,236)( 91,233)( 92,234)( 93,239)( 94,240)( 95,237)
( 96,238)( 97,243)( 98,244)( 99,241)(100,242)(101,247)(102,248)(103,245)
(104,246)(105,251)(106,252)(107,249)(108,250)(109,255)(110,256)(111,253)
(112,254)(113,259)(114,260)(115,257)(116,258)(117,263)(118,264)(119,261)
(120,262)(121,267)(122,268)(123,265)(124,266)(125,271)(126,272)(127,269)
(128,270)(129,275)(130,276)(131,273)(132,274)(133,279)(134,280)(135,277)
(136,278)(137,283)(138,284)(139,281)(140,282)(141,287)(142,288)(143,285)
(144,286);
s4 := Sym(290)!(289,290);
poly := sub<Sym(290)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope