Questions?
See the FAQ
or other info.

Polytope of Type {4,12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,6}*1152f
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 4
Schlafli Type : {4,12,6}
Number of vertices, edges, etc : 8, 48, 72, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,6}*576e, {4,12,6}*576g, {4,6,6}*576b
   3-fold quotients : {4,12,2}*384b
   4-fold quotients : {2,12,6}*288b, {4,3,6}*288, {4,6,6}*288e, {4,6,6}*288f
   6-fold quotients : {4,12,2}*192b, {4,12,2}*192c, {4,6,2}*192
   8-fold quotients : {4,3,6}*144, {2,6,6}*144c
   12-fold quotients : {2,12,2}*96, {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   16-fold quotients : {2,3,6}*72
   24-fold quotients : {4,3,2}*48, {2,6,2}*48
   36-fold quotients : {2,4,2}*32
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,147)(  2,148)(  3,145)(  4,146)(  5,151)(  6,152)(  7,149)(  8,150)
(  9,155)( 10,156)( 11,153)( 12,154)( 13,159)( 14,160)( 15,157)( 16,158)
( 17,163)( 18,164)( 19,161)( 20,162)( 21,167)( 22,168)( 23,165)( 24,166)
( 25,171)( 26,172)( 27,169)( 28,170)( 29,175)( 30,176)( 31,173)( 32,174)
( 33,179)( 34,180)( 35,177)( 36,178)( 37,183)( 38,184)( 39,181)( 40,182)
( 41,187)( 42,188)( 43,185)( 44,186)( 45,191)( 46,192)( 47,189)( 48,190)
( 49,195)( 50,196)( 51,193)( 52,194)( 53,199)( 54,200)( 55,197)( 56,198)
( 57,203)( 58,204)( 59,201)( 60,202)( 61,207)( 62,208)( 63,205)( 64,206)
( 65,211)( 66,212)( 67,209)( 68,210)( 69,215)( 70,216)( 71,213)( 72,214)
( 73,219)( 74,220)( 75,217)( 76,218)( 77,223)( 78,224)( 79,221)( 80,222)
( 81,227)( 82,228)( 83,225)( 84,226)( 85,231)( 86,232)( 87,229)( 88,230)
( 89,235)( 90,236)( 91,233)( 92,234)( 93,239)( 94,240)( 95,237)( 96,238)
( 97,243)( 98,244)( 99,241)(100,242)(101,247)(102,248)(103,245)(104,246)
(105,251)(106,252)(107,249)(108,250)(109,255)(110,256)(111,253)(112,254)
(113,259)(114,260)(115,257)(116,258)(117,263)(118,264)(119,261)(120,262)
(121,267)(122,268)(123,265)(124,266)(125,271)(126,272)(127,269)(128,270)
(129,275)(130,276)(131,273)(132,274)(133,279)(134,280)(135,277)(136,278)
(137,283)(138,284)(139,281)(140,282)(141,287)(142,288)(143,285)(144,286);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)( 15, 28)
( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)( 23, 32)
( 24, 31)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)
( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)
( 59, 68)( 60, 67)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)( 78,118)
( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,133)( 86,134)
( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)( 94,138)
( 95,140)( 96,139)( 97,121)( 98,122)( 99,124)(100,123)(101,129)(102,130)
(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)(147,148)(149,153)
(150,154)(151,156)(152,155)(157,169)(158,170)(159,172)(160,171)(161,177)
(162,178)(163,180)(164,179)(165,173)(166,174)(167,176)(168,175)(183,184)
(185,189)(186,190)(187,192)(188,191)(193,205)(194,206)(195,208)(196,207)
(197,213)(198,214)(199,216)(200,215)(201,209)(202,210)(203,212)(204,211)
(217,253)(218,254)(219,256)(220,255)(221,261)(222,262)(223,264)(224,263)
(225,257)(226,258)(227,260)(228,259)(229,277)(230,278)(231,280)(232,279)
(233,285)(234,286)(235,288)(236,287)(237,281)(238,282)(239,284)(240,283)
(241,265)(242,266)(243,268)(244,267)(245,273)(246,274)(247,276)(248,275)
(249,269)(250,270)(251,272)(252,271);;
s2 := (  1, 89)(  2, 92)(  3, 91)(  4, 90)(  5, 85)(  6, 88)(  7, 87)(  8, 86)
(  9, 93)( 10, 96)( 11, 95)( 12, 94)( 13, 77)( 14, 80)( 15, 79)( 16, 78)
( 17, 73)( 18, 76)( 19, 75)( 20, 74)( 21, 81)( 22, 84)( 23, 83)( 24, 82)
( 25,101)( 26,104)( 27,103)( 28,102)( 29, 97)( 30,100)( 31, 99)( 32, 98)
( 33,105)( 34,108)( 35,107)( 36,106)( 37,125)( 38,128)( 39,127)( 40,126)
( 41,121)( 42,124)( 43,123)( 44,122)( 45,129)( 46,132)( 47,131)( 48,130)
( 49,113)( 50,116)( 51,115)( 52,114)( 53,109)( 54,112)( 55,111)( 56,110)
( 57,117)( 58,120)( 59,119)( 60,118)( 61,137)( 62,140)( 63,139)( 64,138)
( 65,133)( 66,136)( 67,135)( 68,134)( 69,141)( 70,144)( 71,143)( 72,142)
(145,233)(146,236)(147,235)(148,234)(149,229)(150,232)(151,231)(152,230)
(153,237)(154,240)(155,239)(156,238)(157,221)(158,224)(159,223)(160,222)
(161,217)(162,220)(163,219)(164,218)(165,225)(166,228)(167,227)(168,226)
(169,245)(170,248)(171,247)(172,246)(173,241)(174,244)(175,243)(176,242)
(177,249)(178,252)(179,251)(180,250)(181,269)(182,272)(183,271)(184,270)
(185,265)(186,268)(187,267)(188,266)(189,273)(190,276)(191,275)(192,274)
(193,257)(194,260)(195,259)(196,258)(197,253)(198,256)(199,255)(200,254)
(201,261)(202,264)(203,263)(204,262)(205,281)(206,284)(207,283)(208,282)
(209,277)(210,280)(211,279)(212,278)(213,285)(214,288)(215,287)(216,286);;
s3 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)(116,120)
(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)(140,144)
(149,153)(150,154)(151,155)(152,156)(161,165)(162,166)(163,167)(164,168)
(173,177)(174,178)(175,179)(176,180)(185,189)(186,190)(187,191)(188,192)
(197,201)(198,202)(199,203)(200,204)(209,213)(210,214)(211,215)(212,216)
(221,225)(222,226)(223,227)(224,228)(233,237)(234,238)(235,239)(236,240)
(245,249)(246,250)(247,251)(248,252)(257,261)(258,262)(259,263)(260,264)
(269,273)(270,274)(271,275)(272,276)(281,285)(282,286)(283,287)(284,288);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  1,147)(  2,148)(  3,145)(  4,146)(  5,151)(  6,152)(  7,149)
(  8,150)(  9,155)( 10,156)( 11,153)( 12,154)( 13,159)( 14,160)( 15,157)
( 16,158)( 17,163)( 18,164)( 19,161)( 20,162)( 21,167)( 22,168)( 23,165)
( 24,166)( 25,171)( 26,172)( 27,169)( 28,170)( 29,175)( 30,176)( 31,173)
( 32,174)( 33,179)( 34,180)( 35,177)( 36,178)( 37,183)( 38,184)( 39,181)
( 40,182)( 41,187)( 42,188)( 43,185)( 44,186)( 45,191)( 46,192)( 47,189)
( 48,190)( 49,195)( 50,196)( 51,193)( 52,194)( 53,199)( 54,200)( 55,197)
( 56,198)( 57,203)( 58,204)( 59,201)( 60,202)( 61,207)( 62,208)( 63,205)
( 64,206)( 65,211)( 66,212)( 67,209)( 68,210)( 69,215)( 70,216)( 71,213)
( 72,214)( 73,219)( 74,220)( 75,217)( 76,218)( 77,223)( 78,224)( 79,221)
( 80,222)( 81,227)( 82,228)( 83,225)( 84,226)( 85,231)( 86,232)( 87,229)
( 88,230)( 89,235)( 90,236)( 91,233)( 92,234)( 93,239)( 94,240)( 95,237)
( 96,238)( 97,243)( 98,244)( 99,241)(100,242)(101,247)(102,248)(103,245)
(104,246)(105,251)(106,252)(107,249)(108,250)(109,255)(110,256)(111,253)
(112,254)(113,259)(114,260)(115,257)(116,258)(117,263)(118,264)(119,261)
(120,262)(121,267)(122,268)(123,265)(124,266)(125,271)(126,272)(127,269)
(128,270)(129,275)(130,276)(131,273)(132,274)(133,279)(134,280)(135,277)
(136,278)(137,283)(138,284)(139,281)(140,282)(141,287)(142,288)(143,285)
(144,286);
s1 := Sym(288)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)
( 15, 28)( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)
( 23, 32)( 24, 31)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)
( 50, 62)( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)
( 58, 66)( 59, 68)( 60, 67)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)
( 78,118)( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,133)
( 86,134)( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)
( 94,138)( 95,140)( 96,139)( 97,121)( 98,122)( 99,124)(100,123)(101,129)
(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)(147,148)
(149,153)(150,154)(151,156)(152,155)(157,169)(158,170)(159,172)(160,171)
(161,177)(162,178)(163,180)(164,179)(165,173)(166,174)(167,176)(168,175)
(183,184)(185,189)(186,190)(187,192)(188,191)(193,205)(194,206)(195,208)
(196,207)(197,213)(198,214)(199,216)(200,215)(201,209)(202,210)(203,212)
(204,211)(217,253)(218,254)(219,256)(220,255)(221,261)(222,262)(223,264)
(224,263)(225,257)(226,258)(227,260)(228,259)(229,277)(230,278)(231,280)
(232,279)(233,285)(234,286)(235,288)(236,287)(237,281)(238,282)(239,284)
(240,283)(241,265)(242,266)(243,268)(244,267)(245,273)(246,274)(247,276)
(248,275)(249,269)(250,270)(251,272)(252,271);
s2 := Sym(288)!(  1, 89)(  2, 92)(  3, 91)(  4, 90)(  5, 85)(  6, 88)(  7, 87)
(  8, 86)(  9, 93)( 10, 96)( 11, 95)( 12, 94)( 13, 77)( 14, 80)( 15, 79)
( 16, 78)( 17, 73)( 18, 76)( 19, 75)( 20, 74)( 21, 81)( 22, 84)( 23, 83)
( 24, 82)( 25,101)( 26,104)( 27,103)( 28,102)( 29, 97)( 30,100)( 31, 99)
( 32, 98)( 33,105)( 34,108)( 35,107)( 36,106)( 37,125)( 38,128)( 39,127)
( 40,126)( 41,121)( 42,124)( 43,123)( 44,122)( 45,129)( 46,132)( 47,131)
( 48,130)( 49,113)( 50,116)( 51,115)( 52,114)( 53,109)( 54,112)( 55,111)
( 56,110)( 57,117)( 58,120)( 59,119)( 60,118)( 61,137)( 62,140)( 63,139)
( 64,138)( 65,133)( 66,136)( 67,135)( 68,134)( 69,141)( 70,144)( 71,143)
( 72,142)(145,233)(146,236)(147,235)(148,234)(149,229)(150,232)(151,231)
(152,230)(153,237)(154,240)(155,239)(156,238)(157,221)(158,224)(159,223)
(160,222)(161,217)(162,220)(163,219)(164,218)(165,225)(166,228)(167,227)
(168,226)(169,245)(170,248)(171,247)(172,246)(173,241)(174,244)(175,243)
(176,242)(177,249)(178,252)(179,251)(180,250)(181,269)(182,272)(183,271)
(184,270)(185,265)(186,268)(187,267)(188,266)(189,273)(190,276)(191,275)
(192,274)(193,257)(194,260)(195,259)(196,258)(197,253)(198,256)(199,255)
(200,254)(201,261)(202,264)(203,263)(204,262)(205,281)(206,284)(207,283)
(208,282)(209,277)(210,280)(211,279)(212,278)(213,285)(214,288)(215,287)
(216,286);
s3 := Sym(288)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)
(116,120)(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)
(140,144)(149,153)(150,154)(151,155)(152,156)(161,165)(162,166)(163,167)
(164,168)(173,177)(174,178)(175,179)(176,180)(185,189)(186,190)(187,191)
(188,192)(197,201)(198,202)(199,203)(200,204)(209,213)(210,214)(211,215)
(212,216)(221,225)(222,226)(223,227)(224,228)(233,237)(234,238)(235,239)
(236,240)(245,249)(246,250)(247,251)(248,252)(257,261)(258,262)(259,263)
(260,264)(269,273)(270,274)(271,275)(272,276)(281,285)(282,286)(283,287)
(284,288);
poly := sub<Sym(288)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope