Questions?
See the FAQ
or other info.

Polytope of Type {2,6,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,12,4}*1152d
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 5
Schlafli Type : {2,6,12,4}
Number of vertices, edges, etc : 2, 6, 36, 24, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,6,4}*576d
   3-fold quotients : {2,2,12,4}*384b
   6-fold quotients : {2,2,6,4}*192c
   12-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  7, 11)(  8, 12)(  9, 13)( 10, 14)( 19, 23)( 20, 24)( 21, 25)( 22, 26)
( 31, 35)( 32, 36)( 33, 37)( 34, 38)( 43, 47)( 44, 48)( 45, 49)( 46, 50)
( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 71)( 68, 72)( 69, 73)( 70, 74)
( 79, 83)( 80, 84)( 81, 85)( 82, 86)( 91, 95)( 92, 96)( 93, 97)( 94, 98)
(103,107)(104,108)(105,109)(106,110)(115,119)(116,120)(117,121)(118,122)
(127,131)(128,132)(129,133)(130,134)(139,143)(140,144)(141,145)(142,146);;
s2 := (  3,  7)(  4,  9)(  5,  8)(  6, 10)( 12, 13)( 15, 31)( 16, 33)( 17, 32)
( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)( 25, 36)
( 26, 38)( 39, 43)( 40, 45)( 41, 44)( 42, 46)( 48, 49)( 51, 67)( 52, 69)
( 53, 68)( 54, 70)( 55, 63)( 56, 65)( 57, 64)( 58, 66)( 59, 71)( 60, 73)
( 61, 72)( 62, 74)( 75,115)( 76,117)( 77,116)( 78,118)( 79,111)( 80,113)
( 81,112)( 82,114)( 83,119)( 84,121)( 85,120)( 86,122)( 87,139)( 88,141)
( 89,140)( 90,142)( 91,135)( 92,137)( 93,136)( 94,138)( 95,143)( 96,145)
( 97,144)( 98,146)( 99,127)(100,129)(101,128)(102,130)(103,123)(104,125)
(105,124)(106,126)(107,131)(108,133)(109,132)(110,134);;
s3 := (  3, 87)(  4, 88)(  5, 90)(  6, 89)(  7, 91)(  8, 92)(  9, 94)( 10, 93)
( 11, 95)( 12, 96)( 13, 98)( 14, 97)( 15, 75)( 16, 76)( 17, 78)( 18, 77)
( 19, 79)( 20, 80)( 21, 82)( 22, 81)( 23, 83)( 24, 84)( 25, 86)( 26, 85)
( 27, 99)( 28,100)( 29,102)( 30,101)( 31,103)( 32,104)( 33,106)( 34,105)
( 35,107)( 36,108)( 37,110)( 38,109)( 39,123)( 40,124)( 41,126)( 42,125)
( 43,127)( 44,128)( 45,130)( 46,129)( 47,131)( 48,132)( 49,134)( 50,133)
( 51,111)( 52,112)( 53,114)( 54,113)( 55,115)( 56,116)( 57,118)( 58,117)
( 59,119)( 60,120)( 61,122)( 62,121)( 63,135)( 64,136)( 65,138)( 66,137)
( 67,139)( 68,140)( 69,142)( 70,141)( 71,143)( 72,144)( 73,146)( 74,145);;
s4 := (  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)
( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)
( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)
( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)
( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)( 80, 81)
( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)( 96, 97)
( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)(112,113)
(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)(128,129)
(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)(144,145);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  7, 11)(  8, 12)(  9, 13)( 10, 14)( 19, 23)( 20, 24)( 21, 25)
( 22, 26)( 31, 35)( 32, 36)( 33, 37)( 34, 38)( 43, 47)( 44, 48)( 45, 49)
( 46, 50)( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 71)( 68, 72)( 69, 73)
( 70, 74)( 79, 83)( 80, 84)( 81, 85)( 82, 86)( 91, 95)( 92, 96)( 93, 97)
( 94, 98)(103,107)(104,108)(105,109)(106,110)(115,119)(116,120)(117,121)
(118,122)(127,131)(128,132)(129,133)(130,134)(139,143)(140,144)(141,145)
(142,146);
s2 := Sym(146)!(  3,  7)(  4,  9)(  5,  8)(  6, 10)( 12, 13)( 15, 31)( 16, 33)
( 17, 32)( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)
( 25, 36)( 26, 38)( 39, 43)( 40, 45)( 41, 44)( 42, 46)( 48, 49)( 51, 67)
( 52, 69)( 53, 68)( 54, 70)( 55, 63)( 56, 65)( 57, 64)( 58, 66)( 59, 71)
( 60, 73)( 61, 72)( 62, 74)( 75,115)( 76,117)( 77,116)( 78,118)( 79,111)
( 80,113)( 81,112)( 82,114)( 83,119)( 84,121)( 85,120)( 86,122)( 87,139)
( 88,141)( 89,140)( 90,142)( 91,135)( 92,137)( 93,136)( 94,138)( 95,143)
( 96,145)( 97,144)( 98,146)( 99,127)(100,129)(101,128)(102,130)(103,123)
(104,125)(105,124)(106,126)(107,131)(108,133)(109,132)(110,134);
s3 := Sym(146)!(  3, 87)(  4, 88)(  5, 90)(  6, 89)(  7, 91)(  8, 92)(  9, 94)
( 10, 93)( 11, 95)( 12, 96)( 13, 98)( 14, 97)( 15, 75)( 16, 76)( 17, 78)
( 18, 77)( 19, 79)( 20, 80)( 21, 82)( 22, 81)( 23, 83)( 24, 84)( 25, 86)
( 26, 85)( 27, 99)( 28,100)( 29,102)( 30,101)( 31,103)( 32,104)( 33,106)
( 34,105)( 35,107)( 36,108)( 37,110)( 38,109)( 39,123)( 40,124)( 41,126)
( 42,125)( 43,127)( 44,128)( 45,130)( 46,129)( 47,131)( 48,132)( 49,134)
( 50,133)( 51,111)( 52,112)( 53,114)( 54,113)( 55,115)( 56,116)( 57,118)
( 58,117)( 59,119)( 60,120)( 61,122)( 62,121)( 63,135)( 64,136)( 65,138)
( 66,137)( 67,139)( 68,140)( 69,142)( 70,141)( 71,143)( 72,144)( 73,146)
( 74,145);
s4 := Sym(146)!(  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)
( 16, 17)( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)
( 32, 33)( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)
( 48, 49)( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)
( 64, 65)( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)
( 80, 81)( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)
( 96, 97)( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)
(112,113)(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)
(128,129)(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)
(144,145);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope