Questions?
See the FAQ
or other info.

Polytope of Type {3,2,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,12,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 5
Schlafli Type : {3,2,12,4}
Number of vertices, edges, etc : 3, 3, 24, 48, 8
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,12,4}*576b, {3,2,12,4}*576c, {3,2,6,4}*576
   4-fold quotients : {3,2,12,2}*288, {3,2,3,4}*288, {3,2,6,4}*288b, {3,2,6,4}*288c
   8-fold quotients : {3,2,3,4}*144, {3,2,6,2}*144
   12-fold quotients : {3,2,4,2}*96
   16-fold quotients : {3,2,3,2}*72
   24-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(17,18)(20,24)(21,26)(22,25)(23,27)
(28,40)(29,42)(30,41)(31,43)(32,48)(33,50)(34,49)(35,51)(36,44)(37,46)(38,45)
(39,47)(53,54)(56,60)(57,62)(58,61)(59,63)(65,66)(68,72)(69,74)(70,73)(71,75)
(76,88)(77,90)(78,89)(79,91)(80,96)(81,98)(82,97)(83,99)(84,92)(85,94)(86,93)
(87,95);;
s3 := ( 4,32)( 5,33)( 6,35)( 7,34)( 8,28)( 9,29)(10,31)(11,30)(12,36)(13,37)
(14,39)(15,38)(16,44)(17,45)(18,47)(19,46)(20,40)(21,41)(22,43)(23,42)(24,48)
(25,49)(26,51)(27,50)(52,80)(53,81)(54,83)(55,82)(56,76)(57,77)(58,79)(59,78)
(60,84)(61,85)(62,87)(63,86)(64,92)(65,93)(66,95)(67,94)(68,88)(69,89)(70,91)
(71,90)(72,96)(73,97)(74,99)(75,98);;
s4 := ( 4,55)( 5,54)( 6,53)( 7,52)( 8,59)( 9,58)(10,57)(11,56)(12,63)(13,62)
(14,61)(15,60)(16,67)(17,66)(18,65)(19,64)(20,71)(21,70)(22,69)(23,68)(24,75)
(25,74)(26,73)(27,72)(28,79)(29,78)(30,77)(31,76)(32,83)(33,82)(34,81)(35,80)
(36,87)(37,86)(38,85)(39,84)(40,91)(41,90)(42,89)(43,88)(44,95)(45,94)(46,93)
(47,92)(48,99)(49,98)(50,97)(51,96);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(99)!(2,3);
s1 := Sym(99)!(1,2);
s2 := Sym(99)!( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(17,18)(20,24)(21,26)(22,25)
(23,27)(28,40)(29,42)(30,41)(31,43)(32,48)(33,50)(34,49)(35,51)(36,44)(37,46)
(38,45)(39,47)(53,54)(56,60)(57,62)(58,61)(59,63)(65,66)(68,72)(69,74)(70,73)
(71,75)(76,88)(77,90)(78,89)(79,91)(80,96)(81,98)(82,97)(83,99)(84,92)(85,94)
(86,93)(87,95);
s3 := Sym(99)!( 4,32)( 5,33)( 6,35)( 7,34)( 8,28)( 9,29)(10,31)(11,30)(12,36)
(13,37)(14,39)(15,38)(16,44)(17,45)(18,47)(19,46)(20,40)(21,41)(22,43)(23,42)
(24,48)(25,49)(26,51)(27,50)(52,80)(53,81)(54,83)(55,82)(56,76)(57,77)(58,79)
(59,78)(60,84)(61,85)(62,87)(63,86)(64,92)(65,93)(66,95)(67,94)(68,88)(69,89)
(70,91)(71,90)(72,96)(73,97)(74,99)(75,98);
s4 := Sym(99)!( 4,55)( 5,54)( 6,53)( 7,52)( 8,59)( 9,58)(10,57)(11,56)(12,63)
(13,62)(14,61)(15,60)(16,67)(17,66)(18,65)(19,64)(20,71)(21,70)(22,69)(23,68)
(24,75)(25,74)(26,73)(27,72)(28,79)(29,78)(30,77)(31,76)(32,83)(33,82)(34,81)
(35,80)(36,87)(37,86)(38,85)(39,84)(40,91)(41,90)(42,89)(43,88)(44,95)(45,94)
(46,93)(47,92)(48,99)(49,98)(50,97)(51,96);
poly := sub<Sym(99)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope