Questions?
See the FAQ
or other info.

Polytope of Type {3,2,12,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,12,4,2}*1152c
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 6
Schlafli Type : {3,2,12,4,2}
Number of vertices, edges, etc : 3, 3, 12, 24, 4, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,6,4,2}*576c
   4-fold quotients : {3,2,3,4,2}*288
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)( 9,19)(11,15)(12,14)(13,27)(16,32)(17,35)(18,20)(21,37)
(22,23)(24,40)(25,43)(26,33)(28,31)(29,47)(30,44)(34,46)(38,49)(39,41)(42,51)
(45,48);;
s3 := ( 4,11)( 5, 7)( 6,22)( 8,12)( 9,46)(10,14)(13,37)(15,23)(16,51)(17,45)
(18,29)(19,28)(20,32)(21,26)(24,47)(25,36)(27,41)(30,50)(31,42)(33,40)(34,39)
(35,44)(38,48)(43,49);;
s4 := ( 4,50)( 5,48)( 6,45)( 7,51)( 8,42)( 9,40)(10,36)(11,47)(12,34)(13,27)
(14,46)(15,29)(16,32)(17,41)(18,49)(19,24)(20,38)(21,23)(22,37)(25,33)(26,43)
(28,30)(31,44)(35,39);;
s5 := (52,53);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(53)!(2,3);
s1 := Sym(53)!(1,2);
s2 := Sym(53)!( 5, 6)( 7, 8)( 9,19)(11,15)(12,14)(13,27)(16,32)(17,35)(18,20)
(21,37)(22,23)(24,40)(25,43)(26,33)(28,31)(29,47)(30,44)(34,46)(38,49)(39,41)
(42,51)(45,48);
s3 := Sym(53)!( 4,11)( 5, 7)( 6,22)( 8,12)( 9,46)(10,14)(13,37)(15,23)(16,51)
(17,45)(18,29)(19,28)(20,32)(21,26)(24,47)(25,36)(27,41)(30,50)(31,42)(33,40)
(34,39)(35,44)(38,48)(43,49);
s4 := Sym(53)!( 4,50)( 5,48)( 6,45)( 7,51)( 8,42)( 9,40)(10,36)(11,47)(12,34)
(13,27)(14,46)(15,29)(16,32)(17,41)(18,49)(19,24)(20,38)(21,23)(22,37)(25,33)
(26,43)(28,30)(31,44)(35,39);
s5 := Sym(53)!(52,53);
poly := sub<Sym(53)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s2 >; 
 

to this polytope