Questions?
See the FAQ
or other info.

Polytope of Type {6,4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,12}*1152c
if this polytope has a name.
Group : SmallGroup(1152,157550)
Rank : 4
Schlafli Type : {6,4,12}
Number of vertices, edges, etc : 12, 24, 48, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,4,12}*576, {6,4,6}*576b
   3-fold quotients : {6,4,4}*384d
   4-fold quotients : {6,2,12}*288, {3,4,6}*288
   6-fold quotients : {3,4,4}*192b, {6,4,2}*192
   8-fold quotients : {3,2,12}*144, {6,2,6}*144
   12-fold quotients : {2,2,12}*96, {6,2,4}*96, {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   16-fold quotients : {3,2,6}*72, {6,2,3}*72
   24-fold quotients : {3,2,4}*48, {3,4,2}*48, {2,2,6}*48, {6,2,2}*48
   32-fold quotients : {3,2,3}*36
   36-fold quotients : {2,2,4}*32
   48-fold quotients : {2,2,3}*24, {3,2,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)( 17, 29)
( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 39, 40)
( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)( 54, 66)
( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 75, 76)( 79, 80)
( 83, 84)( 85, 97)( 86, 98)( 87,100)( 88, 99)( 89,101)( 90,102)( 91,104)
( 92,103)( 93,105)( 94,106)( 95,108)( 96,107)(111,112)(115,116)(119,120)
(121,133)(122,134)(123,136)(124,135)(125,137)(126,138)(127,140)(128,139)
(129,141)(130,142)(131,144)(132,143)(147,148)(151,152)(155,156)(157,169)
(158,170)(159,172)(160,171)(161,173)(162,174)(163,176)(164,175)(165,177)
(166,178)(167,180)(168,179)(183,184)(187,188)(191,192)(193,205)(194,206)
(195,208)(196,207)(197,209)(198,210)(199,212)(200,211)(201,213)(202,214)
(203,216)(204,215)(219,220)(223,224)(227,228)(229,241)(230,242)(231,244)
(232,243)(233,245)(234,246)(235,248)(236,247)(237,249)(238,250)(239,252)
(240,251)(255,256)(259,260)(263,264)(265,277)(266,278)(267,280)(268,279)
(269,281)(270,282)(271,284)(272,283)(273,285)(274,286)(275,288)(276,287);;
s1 := (  1,157)(  2,160)(  3,159)(  4,158)(  5,161)(  6,164)(  7,163)(  8,162)
(  9,165)( 10,168)( 11,167)( 12,166)( 13,145)( 14,148)( 15,147)( 16,146)
( 17,149)( 18,152)( 19,151)( 20,150)( 21,153)( 22,156)( 23,155)( 24,154)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,173)( 30,176)( 31,175)( 32,174)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,193)( 38,196)( 39,195)( 40,194)
( 41,197)( 42,200)( 43,199)( 44,198)( 45,201)( 46,204)( 47,203)( 48,202)
( 49,181)( 50,184)( 51,183)( 52,182)( 53,185)( 54,188)( 55,187)( 56,186)
( 57,189)( 58,192)( 59,191)( 60,190)( 61,205)( 62,208)( 63,207)( 64,206)
( 65,209)( 66,212)( 67,211)( 68,210)( 69,213)( 70,216)( 71,215)( 72,214)
( 73,229)( 74,232)( 75,231)( 76,230)( 77,233)( 78,236)( 79,235)( 80,234)
( 81,237)( 82,240)( 83,239)( 84,238)( 85,217)( 86,220)( 87,219)( 88,218)
( 89,221)( 90,224)( 91,223)( 92,222)( 93,225)( 94,228)( 95,227)( 96,226)
( 97,241)( 98,244)( 99,243)(100,242)(101,245)(102,248)(103,247)(104,246)
(105,249)(106,252)(107,251)(108,250)(109,265)(110,268)(111,267)(112,266)
(113,269)(114,272)(115,271)(116,270)(117,273)(118,276)(119,275)(120,274)
(121,253)(122,256)(123,255)(124,254)(125,257)(126,260)(127,259)(128,258)
(129,261)(130,264)(131,263)(132,262)(133,277)(134,280)(135,279)(136,278)
(137,281)(138,284)(139,283)(140,282)(141,285)(142,288)(143,287)(144,286);;
s2 := (  1,  2)(  3,  4)(  5, 10)(  6,  9)(  7, 12)(  8, 11)( 13, 14)( 15, 16)
( 17, 22)( 18, 21)( 19, 24)( 20, 23)( 25, 26)( 27, 28)( 29, 34)( 30, 33)
( 31, 36)( 32, 35)( 37, 38)( 39, 40)( 41, 46)( 42, 45)( 43, 48)( 44, 47)
( 49, 50)( 51, 52)( 53, 58)( 54, 57)( 55, 60)( 56, 59)( 61, 62)( 63, 64)
( 65, 70)( 66, 69)( 67, 72)( 68, 71)( 73,110)( 74,109)( 75,112)( 76,111)
( 77,118)( 78,117)( 79,120)( 80,119)( 81,114)( 82,113)( 83,116)( 84,115)
( 85,122)( 86,121)( 87,124)( 88,123)( 89,130)( 90,129)( 91,132)( 92,131)
( 93,126)( 94,125)( 95,128)( 96,127)( 97,134)( 98,133)( 99,136)(100,135)
(101,142)(102,141)(103,144)(104,143)(105,138)(106,137)(107,140)(108,139)
(145,146)(147,148)(149,154)(150,153)(151,156)(152,155)(157,158)(159,160)
(161,166)(162,165)(163,168)(164,167)(169,170)(171,172)(173,178)(174,177)
(175,180)(176,179)(181,182)(183,184)(185,190)(186,189)(187,192)(188,191)
(193,194)(195,196)(197,202)(198,201)(199,204)(200,203)(205,206)(207,208)
(209,214)(210,213)(211,216)(212,215)(217,254)(218,253)(219,256)(220,255)
(221,262)(222,261)(223,264)(224,263)(225,258)(226,257)(227,260)(228,259)
(229,266)(230,265)(231,268)(232,267)(233,274)(234,273)(235,276)(236,275)
(237,270)(238,269)(239,272)(240,271)(241,278)(242,277)(243,280)(244,279)
(245,286)(246,285)(247,288)(248,287)(249,282)(250,281)(251,284)(252,283);;
s3 := (  1, 77)(  2, 78)(  3, 79)(  4, 80)(  5, 73)(  6, 74)(  7, 75)(  8, 76)
(  9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 89)( 14, 90)( 15, 91)( 16, 92)
( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 93)( 22, 94)( 23, 95)( 24, 96)
( 25,101)( 26,102)( 27,103)( 28,104)( 29, 97)( 30, 98)( 31, 99)( 32,100)
( 33,105)( 34,106)( 35,107)( 36,108)( 37,113)( 38,114)( 39,115)( 40,116)
( 41,109)( 42,110)( 43,111)( 44,112)( 45,117)( 46,118)( 47,119)( 48,120)
( 49,125)( 50,126)( 51,127)( 52,128)( 53,121)( 54,122)( 55,123)( 56,124)
( 57,129)( 58,130)( 59,131)( 60,132)( 61,137)( 62,138)( 63,139)( 64,140)
( 65,133)( 66,134)( 67,135)( 68,136)( 69,141)( 70,142)( 71,143)( 72,144)
(145,221)(146,222)(147,223)(148,224)(149,217)(150,218)(151,219)(152,220)
(153,225)(154,226)(155,227)(156,228)(157,233)(158,234)(159,235)(160,236)
(161,229)(162,230)(163,231)(164,232)(165,237)(166,238)(167,239)(168,240)
(169,245)(170,246)(171,247)(172,248)(173,241)(174,242)(175,243)(176,244)
(177,249)(178,250)(179,251)(180,252)(181,257)(182,258)(183,259)(184,260)
(185,253)(186,254)(187,255)(188,256)(189,261)(190,262)(191,263)(192,264)
(193,269)(194,270)(195,271)(196,272)(197,265)(198,266)(199,267)(200,268)
(201,273)(202,274)(203,275)(204,276)(205,281)(206,282)(207,283)(208,284)
(209,277)(210,278)(211,279)(212,280)(213,285)(214,286)(215,287)(216,288);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)
( 39, 40)( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)
( 54, 66)( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 75, 76)
( 79, 80)( 83, 84)( 85, 97)( 86, 98)( 87,100)( 88, 99)( 89,101)( 90,102)
( 91,104)( 92,103)( 93,105)( 94,106)( 95,108)( 96,107)(111,112)(115,116)
(119,120)(121,133)(122,134)(123,136)(124,135)(125,137)(126,138)(127,140)
(128,139)(129,141)(130,142)(131,144)(132,143)(147,148)(151,152)(155,156)
(157,169)(158,170)(159,172)(160,171)(161,173)(162,174)(163,176)(164,175)
(165,177)(166,178)(167,180)(168,179)(183,184)(187,188)(191,192)(193,205)
(194,206)(195,208)(196,207)(197,209)(198,210)(199,212)(200,211)(201,213)
(202,214)(203,216)(204,215)(219,220)(223,224)(227,228)(229,241)(230,242)
(231,244)(232,243)(233,245)(234,246)(235,248)(236,247)(237,249)(238,250)
(239,252)(240,251)(255,256)(259,260)(263,264)(265,277)(266,278)(267,280)
(268,279)(269,281)(270,282)(271,284)(272,283)(273,285)(274,286)(275,288)
(276,287);
s1 := Sym(288)!(  1,157)(  2,160)(  3,159)(  4,158)(  5,161)(  6,164)(  7,163)
(  8,162)(  9,165)( 10,168)( 11,167)( 12,166)( 13,145)( 14,148)( 15,147)
( 16,146)( 17,149)( 18,152)( 19,151)( 20,150)( 21,153)( 22,156)( 23,155)
( 24,154)( 25,169)( 26,172)( 27,171)( 28,170)( 29,173)( 30,176)( 31,175)
( 32,174)( 33,177)( 34,180)( 35,179)( 36,178)( 37,193)( 38,196)( 39,195)
( 40,194)( 41,197)( 42,200)( 43,199)( 44,198)( 45,201)( 46,204)( 47,203)
( 48,202)( 49,181)( 50,184)( 51,183)( 52,182)( 53,185)( 54,188)( 55,187)
( 56,186)( 57,189)( 58,192)( 59,191)( 60,190)( 61,205)( 62,208)( 63,207)
( 64,206)( 65,209)( 66,212)( 67,211)( 68,210)( 69,213)( 70,216)( 71,215)
( 72,214)( 73,229)( 74,232)( 75,231)( 76,230)( 77,233)( 78,236)( 79,235)
( 80,234)( 81,237)( 82,240)( 83,239)( 84,238)( 85,217)( 86,220)( 87,219)
( 88,218)( 89,221)( 90,224)( 91,223)( 92,222)( 93,225)( 94,228)( 95,227)
( 96,226)( 97,241)( 98,244)( 99,243)(100,242)(101,245)(102,248)(103,247)
(104,246)(105,249)(106,252)(107,251)(108,250)(109,265)(110,268)(111,267)
(112,266)(113,269)(114,272)(115,271)(116,270)(117,273)(118,276)(119,275)
(120,274)(121,253)(122,256)(123,255)(124,254)(125,257)(126,260)(127,259)
(128,258)(129,261)(130,264)(131,263)(132,262)(133,277)(134,280)(135,279)
(136,278)(137,281)(138,284)(139,283)(140,282)(141,285)(142,288)(143,287)
(144,286);
s2 := Sym(288)!(  1,  2)(  3,  4)(  5, 10)(  6,  9)(  7, 12)(  8, 11)( 13, 14)
( 15, 16)( 17, 22)( 18, 21)( 19, 24)( 20, 23)( 25, 26)( 27, 28)( 29, 34)
( 30, 33)( 31, 36)( 32, 35)( 37, 38)( 39, 40)( 41, 46)( 42, 45)( 43, 48)
( 44, 47)( 49, 50)( 51, 52)( 53, 58)( 54, 57)( 55, 60)( 56, 59)( 61, 62)
( 63, 64)( 65, 70)( 66, 69)( 67, 72)( 68, 71)( 73,110)( 74,109)( 75,112)
( 76,111)( 77,118)( 78,117)( 79,120)( 80,119)( 81,114)( 82,113)( 83,116)
( 84,115)( 85,122)( 86,121)( 87,124)( 88,123)( 89,130)( 90,129)( 91,132)
( 92,131)( 93,126)( 94,125)( 95,128)( 96,127)( 97,134)( 98,133)( 99,136)
(100,135)(101,142)(102,141)(103,144)(104,143)(105,138)(106,137)(107,140)
(108,139)(145,146)(147,148)(149,154)(150,153)(151,156)(152,155)(157,158)
(159,160)(161,166)(162,165)(163,168)(164,167)(169,170)(171,172)(173,178)
(174,177)(175,180)(176,179)(181,182)(183,184)(185,190)(186,189)(187,192)
(188,191)(193,194)(195,196)(197,202)(198,201)(199,204)(200,203)(205,206)
(207,208)(209,214)(210,213)(211,216)(212,215)(217,254)(218,253)(219,256)
(220,255)(221,262)(222,261)(223,264)(224,263)(225,258)(226,257)(227,260)
(228,259)(229,266)(230,265)(231,268)(232,267)(233,274)(234,273)(235,276)
(236,275)(237,270)(238,269)(239,272)(240,271)(241,278)(242,277)(243,280)
(244,279)(245,286)(246,285)(247,288)(248,287)(249,282)(250,281)(251,284)
(252,283);
s3 := Sym(288)!(  1, 77)(  2, 78)(  3, 79)(  4, 80)(  5, 73)(  6, 74)(  7, 75)
(  8, 76)(  9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 89)( 14, 90)( 15, 91)
( 16, 92)( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 93)( 22, 94)( 23, 95)
( 24, 96)( 25,101)( 26,102)( 27,103)( 28,104)( 29, 97)( 30, 98)( 31, 99)
( 32,100)( 33,105)( 34,106)( 35,107)( 36,108)( 37,113)( 38,114)( 39,115)
( 40,116)( 41,109)( 42,110)( 43,111)( 44,112)( 45,117)( 46,118)( 47,119)
( 48,120)( 49,125)( 50,126)( 51,127)( 52,128)( 53,121)( 54,122)( 55,123)
( 56,124)( 57,129)( 58,130)( 59,131)( 60,132)( 61,137)( 62,138)( 63,139)
( 64,140)( 65,133)( 66,134)( 67,135)( 68,136)( 69,141)( 70,142)( 71,143)
( 72,144)(145,221)(146,222)(147,223)(148,224)(149,217)(150,218)(151,219)
(152,220)(153,225)(154,226)(155,227)(156,228)(157,233)(158,234)(159,235)
(160,236)(161,229)(162,230)(163,231)(164,232)(165,237)(166,238)(167,239)
(168,240)(169,245)(170,246)(171,247)(172,248)(173,241)(174,242)(175,243)
(176,244)(177,249)(178,250)(179,251)(180,252)(181,257)(182,258)(183,259)
(184,260)(185,253)(186,254)(187,255)(188,256)(189,261)(190,262)(191,263)
(192,264)(193,269)(194,270)(195,271)(196,272)(197,265)(198,266)(199,267)
(200,268)(201,273)(202,274)(203,275)(204,276)(205,281)(206,282)(207,283)
(208,284)(209,277)(210,278)(211,279)(212,280)(213,285)(214,286)(215,287)
(216,288);
poly := sub<Sym(288)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope