Questions?
See the FAQ
or other info.

Polytope of Type {6,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,4}*1152h
if this polytope has a name.
Group : SmallGroup(1152,157559)
Rank : 4
Schlafli Type : {6,12,4}
Number of vertices, edges, etc : 6, 72, 48, 8
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,4}*576b
   3-fold quotients : {2,12,4}*384c
   4-fold quotients : {6,3,4}*288, {6,6,4}*288e, {6,6,4}*288f
   6-fold quotients : {2,6,4}*192
   8-fold quotients : {6,3,4}*144, {6,6,2}*144b
   12-fold quotients : {2,3,4}*96, {2,6,4}*96b, {2,6,4}*96c
   16-fold quotients : {6,3,2}*72
   24-fold quotients : {2,3,4}*48, {2,6,2}*48
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)(116,120)
(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)(140,144);;
s1 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)( 11, 12)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)( 23, 36)
( 24, 35)( 37, 41)( 38, 42)( 39, 44)( 40, 43)( 47, 48)( 49, 65)( 50, 66)
( 51, 68)( 52, 67)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 69)( 58, 70)
( 59, 72)( 60, 71)( 73,113)( 74,114)( 75,116)( 76,115)( 77,109)( 78,110)
( 79,112)( 80,111)( 81,117)( 82,118)( 83,120)( 84,119)( 85,137)( 86,138)
( 87,140)( 88,139)( 89,133)( 90,134)( 91,136)( 92,135)( 93,141)( 94,142)
( 95,144)( 96,143)( 97,125)( 98,126)( 99,128)(100,127)(101,121)(102,122)
(103,124)(104,123)(105,129)(106,130)(107,132)(108,131);;
s2 := (  1, 85)(  2, 88)(  3, 87)(  4, 86)(  5, 93)(  6, 96)(  7, 95)(  8, 94)
(  9, 89)( 10, 92)( 11, 91)( 12, 90)( 13, 73)( 14, 76)( 15, 75)( 16, 74)
( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 77)( 22, 80)( 23, 79)( 24, 78)
( 25, 97)( 26,100)( 27, 99)( 28, 98)( 29,105)( 30,108)( 31,107)( 32,106)
( 33,101)( 34,104)( 35,103)( 36,102)( 37,121)( 38,124)( 39,123)( 40,122)
( 41,129)( 42,132)( 43,131)( 44,130)( 45,125)( 46,128)( 47,127)( 48,126)
( 49,109)( 50,112)( 51,111)( 52,110)( 53,117)( 54,120)( 55,119)( 56,118)
( 57,113)( 58,116)( 59,115)( 60,114)( 61,133)( 62,136)( 63,135)( 64,134)
( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)( 72,138);;
s3 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73,110)( 74,109)( 75,112)( 76,111)
( 77,114)( 78,113)( 79,116)( 80,115)( 81,118)( 82,117)( 83,120)( 84,119)
( 85,122)( 86,121)( 87,124)( 88,123)( 89,126)( 90,125)( 91,128)( 92,127)
( 93,130)( 94,129)( 95,132)( 96,131)( 97,134)( 98,133)( 99,136)(100,135)
(101,138)(102,137)(103,140)(104,139)(105,142)(106,141)(107,144)(108,143);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)
(116,120)(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)
(140,144);
s1 := Sym(144)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)( 11, 12)( 13, 29)( 14, 30)
( 15, 32)( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)
( 23, 36)( 24, 35)( 37, 41)( 38, 42)( 39, 44)( 40, 43)( 47, 48)( 49, 65)
( 50, 66)( 51, 68)( 52, 67)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 69)
( 58, 70)( 59, 72)( 60, 71)( 73,113)( 74,114)( 75,116)( 76,115)( 77,109)
( 78,110)( 79,112)( 80,111)( 81,117)( 82,118)( 83,120)( 84,119)( 85,137)
( 86,138)( 87,140)( 88,139)( 89,133)( 90,134)( 91,136)( 92,135)( 93,141)
( 94,142)( 95,144)( 96,143)( 97,125)( 98,126)( 99,128)(100,127)(101,121)
(102,122)(103,124)(104,123)(105,129)(106,130)(107,132)(108,131);
s2 := Sym(144)!(  1, 85)(  2, 88)(  3, 87)(  4, 86)(  5, 93)(  6, 96)(  7, 95)
(  8, 94)(  9, 89)( 10, 92)( 11, 91)( 12, 90)( 13, 73)( 14, 76)( 15, 75)
( 16, 74)( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 77)( 22, 80)( 23, 79)
( 24, 78)( 25, 97)( 26,100)( 27, 99)( 28, 98)( 29,105)( 30,108)( 31,107)
( 32,106)( 33,101)( 34,104)( 35,103)( 36,102)( 37,121)( 38,124)( 39,123)
( 40,122)( 41,129)( 42,132)( 43,131)( 44,130)( 45,125)( 46,128)( 47,127)
( 48,126)( 49,109)( 50,112)( 51,111)( 52,110)( 53,117)( 54,120)( 55,119)
( 56,118)( 57,113)( 58,116)( 59,115)( 60,114)( 61,133)( 62,136)( 63,135)
( 64,134)( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)
( 72,138);
s3 := Sym(144)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73,110)( 74,109)( 75,112)
( 76,111)( 77,114)( 78,113)( 79,116)( 80,115)( 81,118)( 82,117)( 83,120)
( 84,119)( 85,122)( 86,121)( 87,124)( 88,123)( 89,126)( 90,125)( 91,128)
( 92,127)( 93,130)( 94,129)( 95,132)( 96,131)( 97,134)( 98,133)( 99,136)
(100,135)(101,138)(102,137)(103,140)(104,139)(105,142)(106,141)(107,144)
(108,143);
poly := sub<Sym(144)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >; 
 
References : None.
to this polytope