Questions?
See the FAQ
or other info.

Polytope of Type {2,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,157582)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 48, 144, 48
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,6}*576a
   3-fold quotients : {2,6,6}*384b
   4-fold quotients : {2,6,3}*288
   6-fold quotients : {2,6,6}*192
   8-fold quotients : {2,6,6}*144b
   12-fold quotients : {2,3,6}*96, {2,6,3}*96
   16-fold quotients : {2,6,3}*72
   24-fold quotients : {2,3,3}*48, {2,2,6}*48
   48-fold quotients : {2,2,3}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  5,  8)(  6,  7)(  9, 10)( 13, 16)( 14, 15)( 17, 18)( 21, 24)( 22, 23)
( 25, 26)( 27, 51)( 28, 52)( 29, 56)( 30, 55)( 31, 54)( 32, 53)( 33, 58)
( 34, 57)( 35, 59)( 36, 60)( 37, 64)( 38, 63)( 39, 62)( 40, 61)( 41, 66)
( 42, 65)( 43, 67)( 44, 68)( 45, 72)( 46, 71)( 47, 70)( 48, 69)( 49, 74)
( 50, 73)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)( 91, 92)
( 93, 95)( 94, 96)( 99,124)(100,123)(101,127)(102,128)(103,125)(104,126)
(105,129)(106,130)(107,132)(108,131)(109,135)(110,136)(111,133)(112,134)
(113,137)(114,138)(115,140)(116,139)(117,143)(118,144)(119,141)(120,142)
(121,145)(122,146);;
s2 := (  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 33)(  8, 34)(  9, 31)( 10, 32)
( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 49)( 16, 50)( 17, 47)( 18, 48)
( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 41)( 24, 42)( 25, 39)( 26, 40)
( 53, 54)( 55, 57)( 56, 58)( 59, 67)( 60, 68)( 61, 70)( 62, 69)( 63, 73)
( 64, 74)( 65, 71)( 66, 72)( 75, 99)( 76,100)( 77,102)( 78,101)( 79,105)
( 80,106)( 81,103)( 82,104)( 83,115)( 84,116)( 85,118)( 86,117)( 87,121)
( 88,122)( 89,119)( 90,120)( 91,107)( 92,108)( 93,110)( 94,109)( 95,113)
( 96,114)( 97,111)( 98,112)(125,126)(127,129)(128,130)(131,139)(132,140)
(133,142)(134,141)(135,145)(136,146)(137,143)(138,144);;
s3 := (  3, 89)(  4, 90)(  5, 85)(  6, 86)(  7, 88)(  8, 87)(  9, 83)( 10, 84)
( 11, 81)( 12, 82)( 13, 77)( 14, 78)( 15, 80)( 16, 79)( 17, 75)( 18, 76)
( 19, 97)( 20, 98)( 21, 93)( 22, 94)( 23, 96)( 24, 95)( 25, 91)( 26, 92)
( 27,137)( 28,138)( 29,133)( 30,134)( 31,136)( 32,135)( 33,131)( 34,132)
( 35,129)( 36,130)( 37,125)( 38,126)( 39,128)( 40,127)( 41,123)( 42,124)
( 43,145)( 44,146)( 45,141)( 46,142)( 47,144)( 48,143)( 49,139)( 50,140)
( 51,113)( 52,114)( 53,109)( 54,110)( 55,112)( 56,111)( 57,107)( 58,108)
( 59,105)( 60,106)( 61,101)( 62,102)( 63,104)( 64,103)( 65, 99)( 66,100)
( 67,121)( 68,122)( 69,117)( 70,118)( 71,120)( 72,119)( 73,115)( 74,116);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s3*s2*s1*s2, 
s3*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  5,  8)(  6,  7)(  9, 10)( 13, 16)( 14, 15)( 17, 18)( 21, 24)
( 22, 23)( 25, 26)( 27, 51)( 28, 52)( 29, 56)( 30, 55)( 31, 54)( 32, 53)
( 33, 58)( 34, 57)( 35, 59)( 36, 60)( 37, 64)( 38, 63)( 39, 62)( 40, 61)
( 41, 66)( 42, 65)( 43, 67)( 44, 68)( 45, 72)( 46, 71)( 47, 70)( 48, 69)
( 49, 74)( 50, 73)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)
( 91, 92)( 93, 95)( 94, 96)( 99,124)(100,123)(101,127)(102,128)(103,125)
(104,126)(105,129)(106,130)(107,132)(108,131)(109,135)(110,136)(111,133)
(112,134)(113,137)(114,138)(115,140)(116,139)(117,143)(118,144)(119,141)
(120,142)(121,145)(122,146);
s2 := Sym(146)!(  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 33)(  8, 34)(  9, 31)
( 10, 32)( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 49)( 16, 50)( 17, 47)
( 18, 48)( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 41)( 24, 42)( 25, 39)
( 26, 40)( 53, 54)( 55, 57)( 56, 58)( 59, 67)( 60, 68)( 61, 70)( 62, 69)
( 63, 73)( 64, 74)( 65, 71)( 66, 72)( 75, 99)( 76,100)( 77,102)( 78,101)
( 79,105)( 80,106)( 81,103)( 82,104)( 83,115)( 84,116)( 85,118)( 86,117)
( 87,121)( 88,122)( 89,119)( 90,120)( 91,107)( 92,108)( 93,110)( 94,109)
( 95,113)( 96,114)( 97,111)( 98,112)(125,126)(127,129)(128,130)(131,139)
(132,140)(133,142)(134,141)(135,145)(136,146)(137,143)(138,144);
s3 := Sym(146)!(  3, 89)(  4, 90)(  5, 85)(  6, 86)(  7, 88)(  8, 87)(  9, 83)
( 10, 84)( 11, 81)( 12, 82)( 13, 77)( 14, 78)( 15, 80)( 16, 79)( 17, 75)
( 18, 76)( 19, 97)( 20, 98)( 21, 93)( 22, 94)( 23, 96)( 24, 95)( 25, 91)
( 26, 92)( 27,137)( 28,138)( 29,133)( 30,134)( 31,136)( 32,135)( 33,131)
( 34,132)( 35,129)( 36,130)( 37,125)( 38,126)( 39,128)( 40,127)( 41,123)
( 42,124)( 43,145)( 44,146)( 45,141)( 46,142)( 47,144)( 48,143)( 49,139)
( 50,140)( 51,113)( 52,114)( 53,109)( 54,110)( 55,112)( 56,111)( 57,107)
( 58,108)( 59,105)( 60,106)( 61,101)( 62,102)( 63,104)( 64,103)( 65, 99)
( 66,100)( 67,121)( 68,122)( 69,117)( 70,118)( 71,120)( 72,119)( 73,115)
( 74,116);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s3*s2*s1*s2, 
s3*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2 >; 
 

to this polytope