Questions?
See the FAQ
or other info.

Polytope of Type {6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,157582)
Rank : 4
Schlafli Type : {6,6,2}
Number of vertices, edges, etc : 48, 144, 48, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2}*576a
   3-fold quotients : {6,6,2}*384b
   4-fold quotients : {6,3,2}*288
   6-fold quotients : {6,6,2}*192
   8-fold quotients : {6,6,2}*144b
   12-fold quotients : {3,6,2}*96, {6,3,2}*96
   16-fold quotients : {6,3,2}*72
   24-fold quotients : {3,3,2}*48, {2,6,2}*48
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  6)(  4,  5)(  7,  8)( 11, 14)( 12, 13)( 15, 16)( 19, 22)( 20, 21)
( 23, 24)( 25, 49)( 26, 50)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 56)
( 32, 55)( 33, 57)( 34, 58)( 35, 62)( 36, 61)( 37, 60)( 38, 59)( 39, 64)
( 40, 63)( 41, 65)( 42, 66)( 43, 70)( 44, 69)( 45, 68)( 46, 67)( 47, 72)
( 48, 71)( 73, 74)( 75, 77)( 76, 78)( 81, 82)( 83, 85)( 84, 86)( 89, 90)
( 91, 93)( 92, 94)( 97,122)( 98,121)( 99,125)(100,126)(101,123)(102,124)
(103,127)(104,128)(105,130)(106,129)(107,133)(108,134)(109,131)(110,132)
(111,135)(112,136)(113,138)(114,137)(115,141)(116,142)(117,139)(118,140)
(119,143)(120,144);;
s1 := (  1, 25)(  2, 26)(  3, 28)(  4, 27)(  5, 31)(  6, 32)(  7, 29)(  8, 30)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 47)( 14, 48)( 15, 45)( 16, 46)
( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 39)( 22, 40)( 23, 37)( 24, 38)
( 51, 52)( 53, 55)( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)
( 62, 72)( 63, 69)( 64, 70)( 73, 97)( 74, 98)( 75,100)( 76, 99)( 77,103)
( 78,104)( 79,101)( 80,102)( 81,113)( 82,114)( 83,116)( 84,115)( 85,119)
( 86,120)( 87,117)( 88,118)( 89,105)( 90,106)( 91,108)( 92,107)( 93,111)
( 94,112)( 95,109)( 96,110)(123,124)(125,127)(126,128)(129,137)(130,138)
(131,140)(132,139)(133,143)(134,144)(135,141)(136,142);;
s2 := (  1, 87)(  2, 88)(  3, 83)(  4, 84)(  5, 86)(  6, 85)(  7, 81)(  8, 82)
(  9, 79)( 10, 80)( 11, 75)( 12, 76)( 13, 78)( 14, 77)( 15, 73)( 16, 74)
( 17, 95)( 18, 96)( 19, 91)( 20, 92)( 21, 94)( 22, 93)( 23, 89)( 24, 90)
( 25,135)( 26,136)( 27,131)( 28,132)( 29,134)( 30,133)( 31,129)( 32,130)
( 33,127)( 34,128)( 35,123)( 36,124)( 37,126)( 38,125)( 39,121)( 40,122)
( 41,143)( 42,144)( 43,139)( 44,140)( 45,142)( 46,141)( 47,137)( 48,138)
( 49,111)( 50,112)( 51,107)( 52,108)( 53,110)( 54,109)( 55,105)( 56,106)
( 57,103)( 58,104)( 59, 99)( 60,100)( 61,102)( 62,101)( 63, 97)( 64, 98)
( 65,119)( 66,120)( 67,115)( 68,116)( 69,118)( 70,117)( 71,113)( 72,114);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  3,  6)(  4,  5)(  7,  8)( 11, 14)( 12, 13)( 15, 16)( 19, 22)
( 20, 21)( 23, 24)( 25, 49)( 26, 50)( 27, 54)( 28, 53)( 29, 52)( 30, 51)
( 31, 56)( 32, 55)( 33, 57)( 34, 58)( 35, 62)( 36, 61)( 37, 60)( 38, 59)
( 39, 64)( 40, 63)( 41, 65)( 42, 66)( 43, 70)( 44, 69)( 45, 68)( 46, 67)
( 47, 72)( 48, 71)( 73, 74)( 75, 77)( 76, 78)( 81, 82)( 83, 85)( 84, 86)
( 89, 90)( 91, 93)( 92, 94)( 97,122)( 98,121)( 99,125)(100,126)(101,123)
(102,124)(103,127)(104,128)(105,130)(106,129)(107,133)(108,134)(109,131)
(110,132)(111,135)(112,136)(113,138)(114,137)(115,141)(116,142)(117,139)
(118,140)(119,143)(120,144);
s1 := Sym(146)!(  1, 25)(  2, 26)(  3, 28)(  4, 27)(  5, 31)(  6, 32)(  7, 29)
(  8, 30)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 47)( 14, 48)( 15, 45)
( 16, 46)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 39)( 22, 40)( 23, 37)
( 24, 38)( 51, 52)( 53, 55)( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)
( 61, 71)( 62, 72)( 63, 69)( 64, 70)( 73, 97)( 74, 98)( 75,100)( 76, 99)
( 77,103)( 78,104)( 79,101)( 80,102)( 81,113)( 82,114)( 83,116)( 84,115)
( 85,119)( 86,120)( 87,117)( 88,118)( 89,105)( 90,106)( 91,108)( 92,107)
( 93,111)( 94,112)( 95,109)( 96,110)(123,124)(125,127)(126,128)(129,137)
(130,138)(131,140)(132,139)(133,143)(134,144)(135,141)(136,142);
s2 := Sym(146)!(  1, 87)(  2, 88)(  3, 83)(  4, 84)(  5, 86)(  6, 85)(  7, 81)
(  8, 82)(  9, 79)( 10, 80)( 11, 75)( 12, 76)( 13, 78)( 14, 77)( 15, 73)
( 16, 74)( 17, 95)( 18, 96)( 19, 91)( 20, 92)( 21, 94)( 22, 93)( 23, 89)
( 24, 90)( 25,135)( 26,136)( 27,131)( 28,132)( 29,134)( 30,133)( 31,129)
( 32,130)( 33,127)( 34,128)( 35,123)( 36,124)( 37,126)( 38,125)( 39,121)
( 40,122)( 41,143)( 42,144)( 43,139)( 44,140)( 45,142)( 46,141)( 47,137)
( 48,138)( 49,111)( 50,112)( 51,107)( 52,108)( 53,110)( 54,109)( 55,105)
( 56,106)( 57,103)( 58,104)( 59, 99)( 60,100)( 61,102)( 62,101)( 63, 97)
( 64, 98)( 65,119)( 66,120)( 67,115)( 68,116)( 69,118)( 70,117)( 71,113)
( 72,114);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1 >; 
 

to this polytope