Questions?
See the FAQ
or other info.

Polytope of Type {3,2,2,8,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,8,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,157603)
Rank : 6
Schlafli Type : {3,2,2,8,3}
Number of vertices, edges, etc : 3, 3, 2, 16, 24, 6
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,2,4,3}*576
   4-fold quotients : {3,2,2,4,3}*288
   8-fold quotients : {3,2,2,2,3}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 6,16)( 7,12)( 8,11)( 9,32)(10,34)(13,17)(14,21)(15,23)(18,20)(19,22)
(24,49)(25,53)(26,48)(27,51)(28,52)(29,50)(30,33)(31,35)(36,44)(37,46)(38,42)
(39,45)(40,47)(41,43);;
s4 := ( 7, 8)( 9,10)(11,24)(12,27)(14,19)(15,18)(16,36)(17,39)(20,42)(21,43)
(22,28)(23,25)(26,47)(29,46)(30,31)(32,48)(33,50)(34,37)(35,40)(38,52)(41,53)
(44,45);;
s5 := ( 6,10)( 7,19)( 8,15)(11,23)(12,22)(13,31)(14,18)(16,34)(17,35)(20,21)
(24,26)(25,47)(27,29)(28,46)(36,38)(37,52)(39,41)(40,53)(42,44)(43,45)(48,49)
(50,51);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5, 
s3*s5*s4*s3*s5*s4*s3*s4*s3*s5*s4*s3*s5*s4*s3*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(53)!(2,3);
s1 := Sym(53)!(1,2);
s2 := Sym(53)!(4,5);
s3 := Sym(53)!( 6,16)( 7,12)( 8,11)( 9,32)(10,34)(13,17)(14,21)(15,23)(18,20)
(19,22)(24,49)(25,53)(26,48)(27,51)(28,52)(29,50)(30,33)(31,35)(36,44)(37,46)
(38,42)(39,45)(40,47)(41,43);
s4 := Sym(53)!( 7, 8)( 9,10)(11,24)(12,27)(14,19)(15,18)(16,36)(17,39)(20,42)
(21,43)(22,28)(23,25)(26,47)(29,46)(30,31)(32,48)(33,50)(34,37)(35,40)(38,52)
(41,53)(44,45);
s5 := Sym(53)!( 6,10)( 7,19)( 8,15)(11,23)(12,22)(13,31)(14,18)(16,34)(17,35)
(20,21)(24,26)(25,47)(27,29)(28,46)(36,38)(37,52)(39,41)(40,53)(42,44)(43,45)
(48,49)(50,51);
poly := sub<Sym(53)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5, 
s3*s5*s4*s3*s5*s4*s3*s4*s3*s5*s4*s3*s5*s4*s3*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope