Questions?
See the FAQ
or other info.

Polytope of Type {6,6,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,8}*1152e
if this polytope has a name.
Group : SmallGroup(1152,157621)
Rank : 4
Schlafli Type : {6,6,8}
Number of vertices, edges, etc : 6, 36, 48, 16
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,4}*576b
   3-fold quotients : {2,6,8}*384c
   4-fold quotients : {6,3,4}*288, {6,6,4}*288e, {6,6,4}*288f
   6-fold quotients : {2,6,4}*192
   8-fold quotients : {6,3,4}*144, {6,6,2}*144b
   12-fold quotients : {2,3,4}*96, {2,6,4}*96b, {2,6,4}*96c
   16-fold quotients : {6,3,2}*72
   24-fold quotients : {2,3,4}*48, {2,6,2}*48
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)( 16, 24)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)( 64, 72)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144);;
s1 := (  1,  9)(  2, 10)(  3, 12)(  4, 11)(  5, 15)(  6, 16)(  7, 13)(  8, 14)
( 19, 20)( 21, 23)( 22, 24)( 25, 57)( 26, 58)( 27, 60)( 28, 59)( 29, 63)
( 30, 64)( 31, 61)( 32, 62)( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 55)
( 38, 56)( 39, 53)( 40, 54)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)
( 46, 72)( 47, 69)( 48, 70)( 73, 82)( 74, 81)( 75, 83)( 76, 84)( 77, 88)
( 78, 87)( 79, 86)( 80, 85)( 89, 90)( 93, 96)( 94, 95)( 97,130)( 98,129)
( 99,131)(100,132)(101,136)(102,135)(103,134)(104,133)(105,122)(106,121)
(107,123)(108,124)(109,128)(110,127)(111,126)(112,125)(113,138)(114,137)
(115,139)(116,140)(117,144)(118,143)(119,142)(120,141);;
s2 := (  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)(  8, 28)
(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)( 24, 36)
( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)( 61, 70)
( 62, 69)( 63, 67)( 64, 68)( 73, 97)( 74, 98)( 75,103)( 76,104)( 77,102)
( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)( 85,118)
( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)( 93,110)
( 94,109)( 95,107)( 96,108)(123,127)(124,128)(125,126)(129,137)(130,138)
(131,143)(132,144)(133,142)(134,141)(135,139)(136,140);;
s3 := (  1, 75)(  2, 76)(  3, 74)(  4, 73)(  5, 79)(  6, 80)(  7, 78)(  8, 77)
(  9, 83)( 10, 84)( 11, 82)( 12, 81)( 13, 87)( 14, 88)( 15, 86)( 16, 85)
( 17, 91)( 18, 92)( 19, 90)( 20, 89)( 21, 95)( 22, 96)( 23, 94)( 24, 93)
( 25, 99)( 26,100)( 27, 98)( 28, 97)( 29,103)( 30,104)( 31,102)( 32,101)
( 33,107)( 34,108)( 35,106)( 36,105)( 37,111)( 38,112)( 39,110)( 40,109)
( 41,115)( 42,116)( 43,114)( 44,113)( 45,119)( 46,120)( 47,118)( 48,117)
( 49,123)( 50,124)( 51,122)( 52,121)( 53,127)( 54,128)( 55,126)( 56,125)
( 57,131)( 58,132)( 59,130)( 60,129)( 61,135)( 62,136)( 63,134)( 64,133)
( 65,139)( 66,140)( 67,138)( 68,137)( 69,143)( 70,144)( 71,142)( 72,141);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)
( 16, 24)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)
( 64, 72)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)
(112,120)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144);
s1 := Sym(144)!(  1,  9)(  2, 10)(  3, 12)(  4, 11)(  5, 15)(  6, 16)(  7, 13)
(  8, 14)( 19, 20)( 21, 23)( 22, 24)( 25, 57)( 26, 58)( 27, 60)( 28, 59)
( 29, 63)( 30, 64)( 31, 61)( 32, 62)( 33, 49)( 34, 50)( 35, 52)( 36, 51)
( 37, 55)( 38, 56)( 39, 53)( 40, 54)( 41, 65)( 42, 66)( 43, 68)( 44, 67)
( 45, 71)( 46, 72)( 47, 69)( 48, 70)( 73, 82)( 74, 81)( 75, 83)( 76, 84)
( 77, 88)( 78, 87)( 79, 86)( 80, 85)( 89, 90)( 93, 96)( 94, 95)( 97,130)
( 98,129)( 99,131)(100,132)(101,136)(102,135)(103,134)(104,133)(105,122)
(106,121)(107,123)(108,124)(109,128)(110,127)(111,126)(112,125)(113,138)
(114,137)(115,139)(116,140)(117,144)(118,143)(119,142)(120,141);
s2 := Sym(144)!(  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)
(  8, 28)(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)
( 24, 36)( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)
( 61, 70)( 62, 69)( 63, 67)( 64, 68)( 73, 97)( 74, 98)( 75,103)( 76,104)
( 77,102)( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)
( 85,118)( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)
( 93,110)( 94,109)( 95,107)( 96,108)(123,127)(124,128)(125,126)(129,137)
(130,138)(131,143)(132,144)(133,142)(134,141)(135,139)(136,140);
s3 := Sym(144)!(  1, 75)(  2, 76)(  3, 74)(  4, 73)(  5, 79)(  6, 80)(  7, 78)
(  8, 77)(  9, 83)( 10, 84)( 11, 82)( 12, 81)( 13, 87)( 14, 88)( 15, 86)
( 16, 85)( 17, 91)( 18, 92)( 19, 90)( 20, 89)( 21, 95)( 22, 96)( 23, 94)
( 24, 93)( 25, 99)( 26,100)( 27, 98)( 28, 97)( 29,103)( 30,104)( 31,102)
( 32,101)( 33,107)( 34,108)( 35,106)( 36,105)( 37,111)( 38,112)( 39,110)
( 40,109)( 41,115)( 42,116)( 43,114)( 44,113)( 45,119)( 46,120)( 47,118)
( 48,117)( 49,123)( 50,124)( 51,122)( 52,121)( 53,127)( 54,128)( 55,126)
( 56,125)( 57,131)( 58,132)( 59,130)( 60,129)( 61,135)( 62,136)( 63,134)
( 64,133)( 65,139)( 66,140)( 67,138)( 68,137)( 69,143)( 70,144)( 71,142)
( 72,141);
poly := sub<Sym(144)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2 >; 
 
References : None.
to this polytope