Questions?
See the FAQ
or other info.

Polytope of Type {2,2,4,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,6,6}*1152d
if this polytope has a name.
Group : SmallGroup(1152,157863)
Rank : 6
Schlafli Type : {2,2,4,6,6}
Number of vertices, edges, etc : 2, 2, 4, 12, 18, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,4,6,2}*384c
   6-fold quotients : {2,2,4,3,2}*192
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)
(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)
(69,70)(71,72)(73,74)(75,76);;
s3 := ( 6, 7)(10,11)(14,15)(17,29)(18,31)(19,30)(20,32)(21,33)(22,35)(23,34)
(24,36)(25,37)(26,39)(27,38)(28,40)(42,43)(46,47)(50,51)(53,65)(54,67)(55,66)
(56,68)(57,69)(58,71)(59,70)(60,72)(61,73)(62,75)(63,74)(64,76);;
s4 := ( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)(11,28)(12,27)(13,21)(14,22)
(15,24)(16,23)(31,32)(33,37)(34,38)(35,40)(36,39)(41,53)(42,54)(43,56)(44,55)
(45,61)(46,62)(47,64)(48,63)(49,57)(50,58)(51,60)(52,59)(67,68)(69,73)(70,74)
(71,76)(72,75);;
s5 := ( 5,45)( 6,46)( 7,47)( 8,48)( 9,41)(10,42)(11,43)(12,44)(13,49)(14,50)
(15,51)(16,52)(17,57)(18,58)(19,59)(20,60)(21,53)(22,54)(23,55)(24,56)(25,61)
(26,62)(27,63)(28,64)(29,69)(30,70)(31,71)(32,72)(33,65)(34,66)(35,67)(36,68)
(37,73)(38,74)(39,75)(40,76);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s5*s4*s3*s4*s5*s4, 
s2*s3*s4*s3*s2*s3*s4*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!(3,4);
s2 := Sym(76)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)
(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)
(67,68)(69,70)(71,72)(73,74)(75,76);
s3 := Sym(76)!( 6, 7)(10,11)(14,15)(17,29)(18,31)(19,30)(20,32)(21,33)(22,35)
(23,34)(24,36)(25,37)(26,39)(27,38)(28,40)(42,43)(46,47)(50,51)(53,65)(54,67)
(55,66)(56,68)(57,69)(58,71)(59,70)(60,72)(61,73)(62,75)(63,74)(64,76);
s4 := Sym(76)!( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)(11,28)(12,27)(13,21)
(14,22)(15,24)(16,23)(31,32)(33,37)(34,38)(35,40)(36,39)(41,53)(42,54)(43,56)
(44,55)(45,61)(46,62)(47,64)(48,63)(49,57)(50,58)(51,60)(52,59)(67,68)(69,73)
(70,74)(71,76)(72,75);
s5 := Sym(76)!( 5,45)( 6,46)( 7,47)( 8,48)( 9,41)(10,42)(11,43)(12,44)(13,49)
(14,50)(15,51)(16,52)(17,57)(18,58)(19,59)(20,60)(21,53)(22,54)(23,55)(24,56)
(25,61)(26,62)(27,63)(28,64)(29,69)(30,70)(31,71)(32,72)(33,65)(34,66)(35,67)
(36,68)(37,73)(38,74)(39,75)(40,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s5*s4*s3*s4*s5*s4, s2*s3*s4*s3*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope