Questions?
See the FAQ
or other info.

Polytope of Type {48,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {48,12}*1152a
if this polytope has a name.
Group : SmallGroup(1152,32078)
Rank : 3
Schlafli Type : {48,12}
Number of vertices, edges, etc : 48, 288, 12
Order of s0s1s2 : 48
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {48,6}*576b, {24,12}*576d
   3-fold quotients : {48,4}*384a
   4-fold quotients : {24,6}*288b, {12,12}*288c
   6-fold quotients : {24,4}*192a, {48,2}*192
   8-fold quotients : {12,6}*144b, {6,12}*144c
   9-fold quotients : {16,4}*128a
   12-fold quotients : {12,4}*96a, {24,2}*96
   16-fold quotients : {6,6}*72c
   18-fold quotients : {8,4}*64a, {16,2}*64
   24-fold quotients : {12,2}*48, {6,4}*48a
   32-fold quotients : {3,6}*36
   36-fold quotients : {4,4}*32, {8,2}*32
   48-fold quotients : {6,2}*24
   72-fold quotients : {2,4}*16, {4,2}*16
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,289)(  2,291)(  3,290)(  4,295)(  5,297)(  6,296)(  7,292)(  8,294)
(  9,293)( 10,298)( 11,300)( 12,299)( 13,304)( 14,306)( 15,305)( 16,301)
( 17,303)( 18,302)( 19,316)( 20,318)( 21,317)( 22,322)( 23,324)( 24,323)
( 25,319)( 26,321)( 27,320)( 28,307)( 29,309)( 30,308)( 31,313)( 32,315)
( 33,314)( 34,310)( 35,312)( 36,311)( 37,325)( 38,327)( 39,326)( 40,331)
( 41,333)( 42,332)( 43,328)( 44,330)( 45,329)( 46,334)( 47,336)( 48,335)
( 49,340)( 50,342)( 51,341)( 52,337)( 53,339)( 54,338)( 55,352)( 56,354)
( 57,353)( 58,358)( 59,360)( 60,359)( 61,355)( 62,357)( 63,356)( 64,343)
( 65,345)( 66,344)( 67,349)( 68,351)( 69,350)( 70,346)( 71,348)( 72,347)
( 73,379)( 74,381)( 75,380)( 76,385)( 77,387)( 78,386)( 79,382)( 80,384)
( 81,383)( 82,388)( 83,390)( 84,389)( 85,394)( 86,396)( 87,395)( 88,391)
( 89,393)( 90,392)( 91,361)( 92,363)( 93,362)( 94,367)( 95,369)( 96,368)
( 97,364)( 98,366)( 99,365)(100,370)(101,372)(102,371)(103,376)(104,378)
(105,377)(106,373)(107,375)(108,374)(109,415)(110,417)(111,416)(112,421)
(113,423)(114,422)(115,418)(116,420)(117,419)(118,424)(119,426)(120,425)
(121,430)(122,432)(123,431)(124,427)(125,429)(126,428)(127,397)(128,399)
(129,398)(130,403)(131,405)(132,404)(133,400)(134,402)(135,401)(136,406)
(137,408)(138,407)(139,412)(140,414)(141,413)(142,409)(143,411)(144,410)
(145,433)(146,435)(147,434)(148,439)(149,441)(150,440)(151,436)(152,438)
(153,437)(154,442)(155,444)(156,443)(157,448)(158,450)(159,449)(160,445)
(161,447)(162,446)(163,460)(164,462)(165,461)(166,466)(167,468)(168,467)
(169,463)(170,465)(171,464)(172,451)(173,453)(174,452)(175,457)(176,459)
(177,458)(178,454)(179,456)(180,455)(181,469)(182,471)(183,470)(184,475)
(185,477)(186,476)(187,472)(188,474)(189,473)(190,478)(191,480)(192,479)
(193,484)(194,486)(195,485)(196,481)(197,483)(198,482)(199,496)(200,498)
(201,497)(202,502)(203,504)(204,503)(205,499)(206,501)(207,500)(208,487)
(209,489)(210,488)(211,493)(212,495)(213,494)(214,490)(215,492)(216,491)
(217,523)(218,525)(219,524)(220,529)(221,531)(222,530)(223,526)(224,528)
(225,527)(226,532)(227,534)(228,533)(229,538)(230,540)(231,539)(232,535)
(233,537)(234,536)(235,505)(236,507)(237,506)(238,511)(239,513)(240,512)
(241,508)(242,510)(243,509)(244,514)(245,516)(246,515)(247,520)(248,522)
(249,521)(250,517)(251,519)(252,518)(253,559)(254,561)(255,560)(256,565)
(257,567)(258,566)(259,562)(260,564)(261,563)(262,568)(263,570)(264,569)
(265,574)(266,576)(267,575)(268,571)(269,573)(270,572)(271,541)(272,543)
(273,542)(274,547)(275,549)(276,548)(277,544)(278,546)(279,545)(280,550)
(281,552)(282,551)(283,556)(284,558)(285,557)(286,553)(287,555)(288,554);;
s1 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)( 26, 31)
( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)( 78, 99)
( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)( 86,106)
( 87,108)( 88,104)( 89,103)( 90,105)(109,128)(110,127)(111,129)(112,134)
(113,133)(114,135)(115,131)(116,130)(117,132)(118,137)(119,136)(120,138)
(121,143)(122,142)(123,144)(124,140)(125,139)(126,141)(145,182)(146,181)
(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)(154,191)
(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)(162,195)
(163,209)(164,208)(165,210)(166,215)(167,214)(168,216)(169,212)(170,211)
(171,213)(172,200)(173,199)(174,201)(175,206)(176,205)(177,207)(178,203)
(179,202)(180,204)(217,272)(218,271)(219,273)(220,278)(221,277)(222,279)
(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)(230,286)
(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)(238,260)
(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)(246,264)
(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)(290,361)
(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)(298,371)
(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)(306,375)
(307,389)(308,388)(309,390)(310,395)(311,394)(312,396)(313,392)(314,391)
(315,393)(316,380)(317,379)(318,381)(319,386)(320,385)(321,387)(322,383)
(323,382)(324,384)(325,398)(326,397)(327,399)(328,404)(329,403)(330,405)
(331,401)(332,400)(333,402)(334,407)(335,406)(336,408)(337,413)(338,412)
(339,414)(340,410)(341,409)(342,411)(343,425)(344,424)(345,426)(346,431)
(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)(354,417)
(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,542)(434,541)
(435,543)(436,548)(437,547)(438,549)(439,545)(440,544)(441,546)(442,551)
(443,550)(444,552)(445,557)(446,556)(447,558)(448,554)(449,553)(450,555)
(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)(458,571)
(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)(466,563)
(467,562)(468,564)(469,506)(470,505)(471,507)(472,512)(473,511)(474,513)
(475,509)(476,508)(477,510)(478,515)(479,514)(480,516)(481,521)(482,520)
(483,522)(484,518)(485,517)(486,519)(487,533)(488,532)(489,534)(490,539)
(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)(498,525)
(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);;
s2 := (  1,145)(  2,150)(  3,152)(  4,148)(  5,153)(  6,146)(  7,151)(  8,147)
(  9,149)( 10,154)( 11,159)( 12,161)( 13,157)( 14,162)( 15,155)( 16,160)
( 17,156)( 18,158)( 19,163)( 20,168)( 21,170)( 22,166)( 23,171)( 24,164)
( 25,169)( 26,165)( 27,167)( 28,172)( 29,177)( 30,179)( 31,175)( 32,180)
( 33,173)( 34,178)( 35,174)( 36,176)( 37,181)( 38,186)( 39,188)( 40,184)
( 41,189)( 42,182)( 43,187)( 44,183)( 45,185)( 46,190)( 47,195)( 48,197)
( 49,193)( 50,198)( 51,191)( 52,196)( 53,192)( 54,194)( 55,199)( 56,204)
( 57,206)( 58,202)( 59,207)( 60,200)( 61,205)( 62,201)( 63,203)( 64,208)
( 65,213)( 66,215)( 67,211)( 68,216)( 69,209)( 70,214)( 71,210)( 72,212)
( 73,217)( 74,222)( 75,224)( 76,220)( 77,225)( 78,218)( 79,223)( 80,219)
( 81,221)( 82,226)( 83,231)( 84,233)( 85,229)( 86,234)( 87,227)( 88,232)
( 89,228)( 90,230)( 91,235)( 92,240)( 93,242)( 94,238)( 95,243)( 96,236)
( 97,241)( 98,237)( 99,239)(100,244)(101,249)(102,251)(103,247)(104,252)
(105,245)(106,250)(107,246)(108,248)(109,253)(110,258)(111,260)(112,256)
(113,261)(114,254)(115,259)(116,255)(117,257)(118,262)(119,267)(120,269)
(121,265)(122,270)(123,263)(124,268)(125,264)(126,266)(127,271)(128,276)
(129,278)(130,274)(131,279)(132,272)(133,277)(134,273)(135,275)(136,280)
(137,285)(138,287)(139,283)(140,288)(141,281)(142,286)(143,282)(144,284)
(289,433)(290,438)(291,440)(292,436)(293,441)(294,434)(295,439)(296,435)
(297,437)(298,442)(299,447)(300,449)(301,445)(302,450)(303,443)(304,448)
(305,444)(306,446)(307,451)(308,456)(309,458)(310,454)(311,459)(312,452)
(313,457)(314,453)(315,455)(316,460)(317,465)(318,467)(319,463)(320,468)
(321,461)(322,466)(323,462)(324,464)(325,469)(326,474)(327,476)(328,472)
(329,477)(330,470)(331,475)(332,471)(333,473)(334,478)(335,483)(336,485)
(337,481)(338,486)(339,479)(340,484)(341,480)(342,482)(343,487)(344,492)
(345,494)(346,490)(347,495)(348,488)(349,493)(350,489)(351,491)(352,496)
(353,501)(354,503)(355,499)(356,504)(357,497)(358,502)(359,498)(360,500)
(361,505)(362,510)(363,512)(364,508)(365,513)(366,506)(367,511)(368,507)
(369,509)(370,514)(371,519)(372,521)(373,517)(374,522)(375,515)(376,520)
(377,516)(378,518)(379,523)(380,528)(381,530)(382,526)(383,531)(384,524)
(385,529)(386,525)(387,527)(388,532)(389,537)(390,539)(391,535)(392,540)
(393,533)(394,538)(395,534)(396,536)(397,541)(398,546)(399,548)(400,544)
(401,549)(402,542)(403,547)(404,543)(405,545)(406,550)(407,555)(408,557)
(409,553)(410,558)(411,551)(412,556)(413,552)(414,554)(415,559)(416,564)
(417,566)(418,562)(419,567)(420,560)(421,565)(422,561)(423,563)(424,568)
(425,573)(426,575)(427,571)(428,576)(429,569)(430,574)(431,570)(432,572);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,289)(  2,291)(  3,290)(  4,295)(  5,297)(  6,296)(  7,292)
(  8,294)(  9,293)( 10,298)( 11,300)( 12,299)( 13,304)( 14,306)( 15,305)
( 16,301)( 17,303)( 18,302)( 19,316)( 20,318)( 21,317)( 22,322)( 23,324)
( 24,323)( 25,319)( 26,321)( 27,320)( 28,307)( 29,309)( 30,308)( 31,313)
( 32,315)( 33,314)( 34,310)( 35,312)( 36,311)( 37,325)( 38,327)( 39,326)
( 40,331)( 41,333)( 42,332)( 43,328)( 44,330)( 45,329)( 46,334)( 47,336)
( 48,335)( 49,340)( 50,342)( 51,341)( 52,337)( 53,339)( 54,338)( 55,352)
( 56,354)( 57,353)( 58,358)( 59,360)( 60,359)( 61,355)( 62,357)( 63,356)
( 64,343)( 65,345)( 66,344)( 67,349)( 68,351)( 69,350)( 70,346)( 71,348)
( 72,347)( 73,379)( 74,381)( 75,380)( 76,385)( 77,387)( 78,386)( 79,382)
( 80,384)( 81,383)( 82,388)( 83,390)( 84,389)( 85,394)( 86,396)( 87,395)
( 88,391)( 89,393)( 90,392)( 91,361)( 92,363)( 93,362)( 94,367)( 95,369)
( 96,368)( 97,364)( 98,366)( 99,365)(100,370)(101,372)(102,371)(103,376)
(104,378)(105,377)(106,373)(107,375)(108,374)(109,415)(110,417)(111,416)
(112,421)(113,423)(114,422)(115,418)(116,420)(117,419)(118,424)(119,426)
(120,425)(121,430)(122,432)(123,431)(124,427)(125,429)(126,428)(127,397)
(128,399)(129,398)(130,403)(131,405)(132,404)(133,400)(134,402)(135,401)
(136,406)(137,408)(138,407)(139,412)(140,414)(141,413)(142,409)(143,411)
(144,410)(145,433)(146,435)(147,434)(148,439)(149,441)(150,440)(151,436)
(152,438)(153,437)(154,442)(155,444)(156,443)(157,448)(158,450)(159,449)
(160,445)(161,447)(162,446)(163,460)(164,462)(165,461)(166,466)(167,468)
(168,467)(169,463)(170,465)(171,464)(172,451)(173,453)(174,452)(175,457)
(176,459)(177,458)(178,454)(179,456)(180,455)(181,469)(182,471)(183,470)
(184,475)(185,477)(186,476)(187,472)(188,474)(189,473)(190,478)(191,480)
(192,479)(193,484)(194,486)(195,485)(196,481)(197,483)(198,482)(199,496)
(200,498)(201,497)(202,502)(203,504)(204,503)(205,499)(206,501)(207,500)
(208,487)(209,489)(210,488)(211,493)(212,495)(213,494)(214,490)(215,492)
(216,491)(217,523)(218,525)(219,524)(220,529)(221,531)(222,530)(223,526)
(224,528)(225,527)(226,532)(227,534)(228,533)(229,538)(230,540)(231,539)
(232,535)(233,537)(234,536)(235,505)(236,507)(237,506)(238,511)(239,513)
(240,512)(241,508)(242,510)(243,509)(244,514)(245,516)(246,515)(247,520)
(248,522)(249,521)(250,517)(251,519)(252,518)(253,559)(254,561)(255,560)
(256,565)(257,567)(258,566)(259,562)(260,564)(261,563)(262,568)(263,570)
(264,569)(265,574)(266,576)(267,575)(268,571)(269,573)(270,572)(271,541)
(272,543)(273,542)(274,547)(275,549)(276,548)(277,544)(278,546)(279,545)
(280,550)(281,552)(282,551)(283,556)(284,558)(285,557)(286,553)(287,555)
(288,554);
s1 := Sym(576)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)
( 26, 31)( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)
( 78, 99)( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)
( 86,106)( 87,108)( 88,104)( 89,103)( 90,105)(109,128)(110,127)(111,129)
(112,134)(113,133)(114,135)(115,131)(116,130)(117,132)(118,137)(119,136)
(120,138)(121,143)(122,142)(123,144)(124,140)(125,139)(126,141)(145,182)
(146,181)(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)
(154,191)(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)
(162,195)(163,209)(164,208)(165,210)(166,215)(167,214)(168,216)(169,212)
(170,211)(171,213)(172,200)(173,199)(174,201)(175,206)(176,205)(177,207)
(178,203)(179,202)(180,204)(217,272)(218,271)(219,273)(220,278)(221,277)
(222,279)(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)
(230,286)(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)
(238,260)(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)
(246,264)(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)
(290,361)(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)
(298,371)(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)
(306,375)(307,389)(308,388)(309,390)(310,395)(311,394)(312,396)(313,392)
(314,391)(315,393)(316,380)(317,379)(318,381)(319,386)(320,385)(321,387)
(322,383)(323,382)(324,384)(325,398)(326,397)(327,399)(328,404)(329,403)
(330,405)(331,401)(332,400)(333,402)(334,407)(335,406)(336,408)(337,413)
(338,412)(339,414)(340,410)(341,409)(342,411)(343,425)(344,424)(345,426)
(346,431)(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)
(354,417)(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,542)
(434,541)(435,543)(436,548)(437,547)(438,549)(439,545)(440,544)(441,546)
(442,551)(443,550)(444,552)(445,557)(446,556)(447,558)(448,554)(449,553)
(450,555)(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)
(458,571)(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)
(466,563)(467,562)(468,564)(469,506)(470,505)(471,507)(472,512)(473,511)
(474,513)(475,509)(476,508)(477,510)(478,515)(479,514)(480,516)(481,521)
(482,520)(483,522)(484,518)(485,517)(486,519)(487,533)(488,532)(489,534)
(490,539)(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)
(498,525)(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);
s2 := Sym(576)!(  1,145)(  2,150)(  3,152)(  4,148)(  5,153)(  6,146)(  7,151)
(  8,147)(  9,149)( 10,154)( 11,159)( 12,161)( 13,157)( 14,162)( 15,155)
( 16,160)( 17,156)( 18,158)( 19,163)( 20,168)( 21,170)( 22,166)( 23,171)
( 24,164)( 25,169)( 26,165)( 27,167)( 28,172)( 29,177)( 30,179)( 31,175)
( 32,180)( 33,173)( 34,178)( 35,174)( 36,176)( 37,181)( 38,186)( 39,188)
( 40,184)( 41,189)( 42,182)( 43,187)( 44,183)( 45,185)( 46,190)( 47,195)
( 48,197)( 49,193)( 50,198)( 51,191)( 52,196)( 53,192)( 54,194)( 55,199)
( 56,204)( 57,206)( 58,202)( 59,207)( 60,200)( 61,205)( 62,201)( 63,203)
( 64,208)( 65,213)( 66,215)( 67,211)( 68,216)( 69,209)( 70,214)( 71,210)
( 72,212)( 73,217)( 74,222)( 75,224)( 76,220)( 77,225)( 78,218)( 79,223)
( 80,219)( 81,221)( 82,226)( 83,231)( 84,233)( 85,229)( 86,234)( 87,227)
( 88,232)( 89,228)( 90,230)( 91,235)( 92,240)( 93,242)( 94,238)( 95,243)
( 96,236)( 97,241)( 98,237)( 99,239)(100,244)(101,249)(102,251)(103,247)
(104,252)(105,245)(106,250)(107,246)(108,248)(109,253)(110,258)(111,260)
(112,256)(113,261)(114,254)(115,259)(116,255)(117,257)(118,262)(119,267)
(120,269)(121,265)(122,270)(123,263)(124,268)(125,264)(126,266)(127,271)
(128,276)(129,278)(130,274)(131,279)(132,272)(133,277)(134,273)(135,275)
(136,280)(137,285)(138,287)(139,283)(140,288)(141,281)(142,286)(143,282)
(144,284)(289,433)(290,438)(291,440)(292,436)(293,441)(294,434)(295,439)
(296,435)(297,437)(298,442)(299,447)(300,449)(301,445)(302,450)(303,443)
(304,448)(305,444)(306,446)(307,451)(308,456)(309,458)(310,454)(311,459)
(312,452)(313,457)(314,453)(315,455)(316,460)(317,465)(318,467)(319,463)
(320,468)(321,461)(322,466)(323,462)(324,464)(325,469)(326,474)(327,476)
(328,472)(329,477)(330,470)(331,475)(332,471)(333,473)(334,478)(335,483)
(336,485)(337,481)(338,486)(339,479)(340,484)(341,480)(342,482)(343,487)
(344,492)(345,494)(346,490)(347,495)(348,488)(349,493)(350,489)(351,491)
(352,496)(353,501)(354,503)(355,499)(356,504)(357,497)(358,502)(359,498)
(360,500)(361,505)(362,510)(363,512)(364,508)(365,513)(366,506)(367,511)
(368,507)(369,509)(370,514)(371,519)(372,521)(373,517)(374,522)(375,515)
(376,520)(377,516)(378,518)(379,523)(380,528)(381,530)(382,526)(383,531)
(384,524)(385,529)(386,525)(387,527)(388,532)(389,537)(390,539)(391,535)
(392,540)(393,533)(394,538)(395,534)(396,536)(397,541)(398,546)(399,548)
(400,544)(401,549)(402,542)(403,547)(404,543)(405,545)(406,550)(407,555)
(408,557)(409,553)(410,558)(411,551)(412,556)(413,552)(414,554)(415,559)
(416,564)(417,566)(418,562)(419,567)(420,560)(421,565)(422,561)(423,563)
(424,568)(425,573)(426,575)(427,571)(428,576)(429,569)(430,574)(431,570)
(432,572);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope