Questions?
See the FAQ
or other info.

# Polytope of Type {12,12}

Atlas Canonical Name : {12,12}*1152c
if this polytope has a name.
Group : SmallGroup(1152,32550)
Rank : 3
Schlafli Type : {12,12}
Number of vertices, edges, etc : 48, 288, 48
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*576a
3-fold quotients : {4,12}*384a, {12,4}*384a
4-fold quotients : {12,12}*288a
6-fold quotients : {4,12}*192a, {12,4}*192a
8-fold quotients : {6,12}*144a, {12,6}*144a
9-fold quotients : {4,4}*128
12-fold quotients : {4,12}*96a, {12,4}*96a
16-fold quotients : {6,6}*72a
18-fold quotients : {4,4}*64
24-fold quotients : {2,12}*48, {12,2}*48, {4,6}*48a, {6,4}*48a
36-fold quotients : {4,4}*32
48-fold quotients : {2,6}*24, {6,2}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12, {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 64)( 38, 69)( 39, 71)( 40, 67)
( 41, 72)( 42, 65)( 43, 70)( 44, 66)( 45, 68)( 46, 55)( 47, 60)( 48, 62)
( 49, 58)( 50, 63)( 51, 56)( 52, 61)( 53, 57)( 54, 59)( 74, 78)( 75, 80)
( 77, 81)( 83, 87)( 84, 89)( 86, 90)( 92, 96)( 93, 98)( 95, 99)(101,105)
(102,107)(104,108)(109,136)(110,141)(111,143)(112,139)(113,144)(114,137)
(115,142)(116,138)(117,140)(118,127)(119,132)(120,134)(121,130)(122,135)
(123,128)(124,133)(125,129)(126,131);;
s1 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)( 26, 31)
( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73,110)( 74,109)( 75,111)( 76,116)( 77,115)( 78,117)
( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)( 84,120)( 85,125)( 86,124)
( 87,126)( 88,122)( 89,121)( 90,123)( 91,137)( 92,136)( 93,138)( 94,143)
( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,128)(101,127)(102,129)
(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);;
s2 := (  1, 73)(  2, 80)(  3, 78)(  4, 79)(  5, 77)(  6, 75)(  7, 76)(  8, 74)
(  9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)( 16, 85)
( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)( 24, 93)
( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)( 32,104)
( 33,102)( 34,103)( 35,101)( 36,108)( 37,109)( 38,116)( 39,114)( 40,115)
( 41,113)( 42,111)( 43,112)( 44,110)( 45,117)( 46,118)( 47,125)( 48,123)
( 49,124)( 50,122)( 51,120)( 52,121)( 53,119)( 54,126)( 55,127)( 56,134)
( 57,132)( 58,133)( 59,131)( 60,129)( 61,130)( 62,128)( 63,135)( 64,136)
( 65,143)( 66,141)( 67,142)( 68,140)( 69,138)( 70,139)( 71,137)( 72,144);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(144)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)
( 21, 26)( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 64)( 38, 69)( 39, 71)
( 40, 67)( 41, 72)( 42, 65)( 43, 70)( 44, 66)( 45, 68)( 46, 55)( 47, 60)
( 48, 62)( 49, 58)( 50, 63)( 51, 56)( 52, 61)( 53, 57)( 54, 59)( 74, 78)
( 75, 80)( 77, 81)( 83, 87)( 84, 89)( 86, 90)( 92, 96)( 93, 98)( 95, 99)
(101,105)(102,107)(104,108)(109,136)(110,141)(111,143)(112,139)(113,144)
(114,137)(115,142)(116,138)(117,140)(118,127)(119,132)(120,134)(121,130)
(122,135)(123,128)(124,133)(125,129)(126,131);
s1 := Sym(144)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)
( 26, 31)( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73,110)( 74,109)( 75,111)( 76,116)( 77,115)
( 78,117)( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)( 84,120)( 85,125)
( 86,124)( 87,126)( 88,122)( 89,121)( 90,123)( 91,137)( 92,136)( 93,138)
( 94,143)( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,128)(101,127)
(102,129)(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);
s2 := Sym(144)!(  1, 73)(  2, 80)(  3, 78)(  4, 79)(  5, 77)(  6, 75)(  7, 76)
(  8, 74)(  9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)
( 16, 85)( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)
( 24, 93)( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)
( 32,104)( 33,102)( 34,103)( 35,101)( 36,108)( 37,109)( 38,116)( 39,114)
( 40,115)( 41,113)( 42,111)( 43,112)( 44,110)( 45,117)( 46,118)( 47,125)
( 48,123)( 49,124)( 50,122)( 51,120)( 52,121)( 53,119)( 54,126)( 55,127)
( 56,134)( 57,132)( 58,133)( 59,131)( 60,129)( 61,130)( 62,128)( 63,135)
( 64,136)( 65,143)( 66,141)( 67,142)( 68,140)( 69,138)( 70,139)( 71,137)
( 72,144);
poly := sub<Sym(144)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope