Questions?
See the FAQ
or other info.

# Polytope of Type {24,12,2}

Atlas Canonical Name : {24,12,2}*1152c
if this polytope has a name.
Group : SmallGroup(1152,97551)
Rank : 4
Schlafli Type : {24,12,2}
Number of vertices, edges, etc : 24, 144, 12, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12,2}*576b, {24,6,2}*576c
3-fold quotients : {8,12,2}*384a
4-fold quotients : {6,12,2}*288b, {12,6,2}*288c
6-fold quotients : {4,12,2}*192a, {8,6,2}*192
8-fold quotients : {6,6,2}*144b
9-fold quotients : {8,4,2}*128a
12-fold quotients : {2,12,2}*96, {4,6,2}*96a
16-fold quotients : {6,3,2}*72
18-fold quotients : {4,4,2}*64, {8,2,2}*64
24-fold quotients : {2,6,2}*48
36-fold quotients : {2,4,2}*32, {4,2,2}*32
48-fold quotients : {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 46)( 38, 48)( 39, 47)( 40, 49)
( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)( 55, 64)( 56, 66)( 57, 65)
( 58, 67)( 59, 69)( 60, 68)( 61, 70)( 62, 72)( 63, 71)( 73,109)( 74,111)
( 75,110)( 76,112)( 77,114)( 78,113)( 79,115)( 80,117)( 81,116)( 82,118)
( 83,120)( 84,119)( 85,121)( 86,123)( 87,122)( 88,124)( 89,126)( 90,125)
( 91,127)( 92,129)( 93,128)( 94,130)( 95,132)( 96,131)( 97,133)( 98,135)
( 99,134)(100,136)(101,138)(102,137)(103,139)(104,141)(105,140)(106,142)
(107,144)(108,143);;
s1 := (  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)(  8, 76)
(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)( 16, 86)
( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)( 24, 99)
( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)( 32,106)
( 33,108)( 34,104)( 35,103)( 36,105)( 37,119)( 38,118)( 39,120)( 40,125)
( 41,124)( 42,126)( 43,122)( 44,121)( 45,123)( 46,110)( 47,109)( 48,111)
( 49,116)( 50,115)( 51,117)( 52,113)( 53,112)( 54,114)( 55,137)( 56,136)
( 57,138)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)( 64,128)
( 65,127)( 66,129)( 67,134)( 68,133)( 69,135)( 70,131)( 71,130)( 72,132);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)( 53, 54)
( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)( 71, 72)
( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)( 78, 92)( 79, 97)( 80, 99)
( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)( 86,102)( 87,101)( 88,106)
( 89,108)( 90,107)(109,130)(110,132)(111,131)(112,127)(113,129)(114,128)
(115,133)(116,135)(117,134)(118,139)(119,141)(120,140)(121,136)(122,138)
(123,137)(124,142)(125,144)(126,143);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(146)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 46)( 38, 48)( 39, 47)
( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)( 55, 64)( 56, 66)
( 57, 65)( 58, 67)( 59, 69)( 60, 68)( 61, 70)( 62, 72)( 63, 71)( 73,109)
( 74,111)( 75,110)( 76,112)( 77,114)( 78,113)( 79,115)( 80,117)( 81,116)
( 82,118)( 83,120)( 84,119)( 85,121)( 86,123)( 87,122)( 88,124)( 89,126)
( 90,125)( 91,127)( 92,129)( 93,128)( 94,130)( 95,132)( 96,131)( 97,133)
( 98,135)( 99,134)(100,136)(101,138)(102,137)(103,139)(104,141)(105,140)
(106,142)(107,144)(108,143);
s1 := Sym(146)!(  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)
(  8, 76)(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)
( 16, 86)( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)
( 24, 99)( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)
( 32,106)( 33,108)( 34,104)( 35,103)( 36,105)( 37,119)( 38,118)( 39,120)
( 40,125)( 41,124)( 42,126)( 43,122)( 44,121)( 45,123)( 46,110)( 47,109)
( 48,111)( 49,116)( 50,115)( 51,117)( 52,113)( 53,112)( 54,114)( 55,137)
( 56,136)( 57,138)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)
( 64,128)( 65,127)( 66,129)( 67,134)( 68,133)( 69,135)( 70,131)( 71,130)
( 72,132);
s2 := Sym(146)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)
( 71, 72)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)( 78, 92)( 79, 97)
( 80, 99)( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)( 86,102)( 87,101)
( 88,106)( 89,108)( 90,107)(109,130)(110,132)(111,131)(112,127)(113,129)
(114,128)(115,133)(116,135)(117,134)(118,139)(119,141)(120,140)(121,136)
(122,138)(123,137)(124,142)(125,144)(126,143);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope