Questions?
See the FAQ
or other info.

Polytope of Type {36,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,8,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98777)
Rank : 4
Schlafli Type : {36,8,2}
Number of vertices, edges, etc : 36, 144, 8, 2
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {36,4,2}*576a
   3-fold quotients : {12,8,2}*384b
   4-fold quotients : {36,2,2}*288, {18,4,2}*288a
   6-fold quotients : {12,4,2}*192a
   8-fold quotients : {18,2,2}*144
   9-fold quotients : {4,8,2}*128b
   12-fold quotients : {12,2,2}*96, {6,4,2}*96a
   16-fold quotients : {9,2,2}*72
   18-fold quotients : {4,4,2}*64
   24-fold quotients : {6,2,2}*48
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   48-fold quotients : {3,2,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  8)(  5,  7)(  6,  9)( 11, 12)( 13, 17)( 14, 16)( 15, 18)
( 19, 28)( 20, 30)( 21, 29)( 22, 35)( 23, 34)( 24, 36)( 25, 32)( 26, 31)
( 27, 33)( 38, 39)( 40, 44)( 41, 43)( 42, 45)( 47, 48)( 49, 53)( 50, 52)
( 51, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73,109)( 74,111)( 75,110)( 76,116)( 77,115)( 78,117)
( 79,113)( 80,112)( 81,114)( 82,118)( 83,120)( 84,119)( 85,125)( 86,124)
( 87,126)( 88,122)( 89,121)( 90,123)( 91,136)( 92,138)( 93,137)( 94,143)
( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,127)(101,129)(102,128)
(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);;
s1 := (  1, 76)(  2, 78)(  3, 77)(  4, 73)(  5, 75)(  6, 74)(  7, 80)(  8, 79)
(  9, 81)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)( 16, 89)
( 17, 88)( 18, 90)( 19,103)( 20,105)( 21,104)( 22,100)( 23,102)( 24,101)
( 25,107)( 26,106)( 27,108)( 28, 94)( 29, 96)( 30, 95)( 31, 91)( 32, 93)
( 33, 92)( 34, 98)( 35, 97)( 36, 99)( 37,112)( 38,114)( 39,113)( 40,109)
( 41,111)( 42,110)( 43,116)( 44,115)( 45,117)( 46,121)( 47,123)( 48,122)
( 49,118)( 50,120)( 51,119)( 52,125)( 53,124)( 54,126)( 55,139)( 56,141)
( 57,140)( 58,136)( 59,138)( 60,137)( 61,143)( 62,142)( 63,144)( 64,130)
( 65,132)( 66,131)( 67,127)( 68,129)( 69,128)( 70,134)( 71,133)( 72,135);;
s2 := ( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)( 26, 35)
( 27, 36)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)
( 44, 53)( 45, 54)( 73, 91)( 74, 92)( 75, 93)( 76, 94)( 77, 95)( 78, 96)
( 79, 97)( 80, 98)( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)( 86,104)
( 87,105)( 88,106)( 89,107)( 90,108)(109,136)(110,137)(111,138)(112,139)
(113,140)(114,141)(115,142)(116,143)(117,144)(118,127)(119,128)(120,129)
(121,130)(122,131)(123,132)(124,133)(125,134)(126,135);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  2,  3)(  4,  8)(  5,  7)(  6,  9)( 11, 12)( 13, 17)( 14, 16)
( 15, 18)( 19, 28)( 20, 30)( 21, 29)( 22, 35)( 23, 34)( 24, 36)( 25, 32)
( 26, 31)( 27, 33)( 38, 39)( 40, 44)( 41, 43)( 42, 45)( 47, 48)( 49, 53)
( 50, 52)( 51, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73,109)( 74,111)( 75,110)( 76,116)( 77,115)
( 78,117)( 79,113)( 80,112)( 81,114)( 82,118)( 83,120)( 84,119)( 85,125)
( 86,124)( 87,126)( 88,122)( 89,121)( 90,123)( 91,136)( 92,138)( 93,137)
( 94,143)( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,127)(101,129)
(102,128)(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);
s1 := Sym(146)!(  1, 76)(  2, 78)(  3, 77)(  4, 73)(  5, 75)(  6, 74)(  7, 80)
(  8, 79)(  9, 81)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)
( 16, 89)( 17, 88)( 18, 90)( 19,103)( 20,105)( 21,104)( 22,100)( 23,102)
( 24,101)( 25,107)( 26,106)( 27,108)( 28, 94)( 29, 96)( 30, 95)( 31, 91)
( 32, 93)( 33, 92)( 34, 98)( 35, 97)( 36, 99)( 37,112)( 38,114)( 39,113)
( 40,109)( 41,111)( 42,110)( 43,116)( 44,115)( 45,117)( 46,121)( 47,123)
( 48,122)( 49,118)( 50,120)( 51,119)( 52,125)( 53,124)( 54,126)( 55,139)
( 56,141)( 57,140)( 58,136)( 59,138)( 60,137)( 61,143)( 62,142)( 63,144)
( 64,130)( 65,132)( 66,131)( 67,127)( 68,129)( 69,128)( 70,134)( 71,133)
( 72,135);
s2 := Sym(146)!( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)
( 26, 35)( 27, 36)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)
( 43, 52)( 44, 53)( 45, 54)( 73, 91)( 74, 92)( 75, 93)( 76, 94)( 77, 95)
( 78, 96)( 79, 97)( 80, 98)( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)
( 86,104)( 87,105)( 88,106)( 89,107)( 90,108)(109,136)(110,137)(111,138)
(112,139)(113,140)(114,141)(115,142)(116,143)(117,144)(118,127)(119,128)
(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope