Questions?
See the FAQ
or other info.

Polytope of Type {2,4,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,8}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98807)
Rank : 4
Schlafli Type : {2,4,8}
Number of vertices, edges, etc : 2, 36, 144, 72
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,4}*576
   4-fold quotients : {2,4,4}*288
   8-fold quotients : {2,4,4}*144
   9-fold quotients : {2,4,8}*128b
   18-fold quotients : {2,4,4}*64
   36-fold quotients : {2,2,4}*32, {2,4,2}*32
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)(24,36)
(25,37)(26,38)(27,33)(28,34)(29,35)(42,45)(43,46)(44,47)(51,54)(52,55)(53,56)
(57,66)(58,67)(59,68)(60,72)(61,73)(62,74)(63,69)(64,70)(65,71);;
s2 := ( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)(24,31)
(25,34)(26,37)(27,32)(28,35)(29,38)(39,57)(40,60)(41,63)(42,58)(43,61)(44,64)
(45,59)(46,62)(47,65)(48,66)(49,69)(50,72)(51,67)(52,70)(53,73)(54,68)(55,71)
(56,74);;
s3 := ( 3,49)( 4,48)( 5,50)( 6,52)( 7,51)( 8,53)( 9,55)(10,54)(11,56)(12,40)
(13,39)(14,41)(15,43)(16,42)(17,44)(18,46)(19,45)(20,47)(21,67)(22,66)(23,68)
(24,70)(25,69)(26,71)(27,73)(28,72)(29,74)(30,58)(31,57)(32,59)(33,61)(34,60)
(35,62)(36,64)(37,63)(38,65);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)
(24,36)(25,37)(26,38)(27,33)(28,34)(29,35)(42,45)(43,46)(44,47)(51,54)(52,55)
(53,56)(57,66)(58,67)(59,68)(60,72)(61,73)(62,74)(63,69)(64,70)(65,71);
s2 := Sym(74)!( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)
(24,31)(25,34)(26,37)(27,32)(28,35)(29,38)(39,57)(40,60)(41,63)(42,58)(43,61)
(44,64)(45,59)(46,62)(47,65)(48,66)(49,69)(50,72)(51,67)(52,70)(53,73)(54,68)
(55,71)(56,74);
s3 := Sym(74)!( 3,49)( 4,48)( 5,50)( 6,52)( 7,51)( 8,53)( 9,55)(10,54)(11,56)
(12,40)(13,39)(14,41)(15,43)(16,42)(17,44)(18,46)(19,45)(20,47)(21,67)(22,66)
(23,68)(24,70)(25,69)(26,71)(27,73)(28,72)(29,74)(30,58)(31,57)(32,59)(33,61)
(34,60)(35,62)(36,64)(37,63)(38,65);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3 >; 
 

to this polytope