Questions?
See the FAQ
or other info.

Polytope of Type {3,6,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4,4}*1152
if this polytope has a name.
Group : SmallGroup(1152,99265)
Rank : 5
Schlafli Type : {3,6,4,4}
Number of vertices, edges, etc : 3, 9, 24, 16, 8
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,4,4}*576
   3-fold quotients : {3,2,4,4}*384
   4-fold quotients : {3,6,2,4}*288, {3,6,4,2}*288
   6-fold quotients : {3,2,4,4}*192
   8-fold quotients : {3,6,2,2}*144
   12-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
   24-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 37)(  2, 39)(  3, 38)(  4, 43)(  5, 45)(  6, 44)(  7, 40)(  8, 42)
(  9, 41)( 10, 46)( 11, 48)( 12, 47)( 13, 52)( 14, 54)( 15, 53)( 16, 49)
( 17, 51)( 18, 50)( 19, 55)( 20, 57)( 21, 56)( 22, 61)( 23, 63)( 24, 62)
( 25, 58)( 26, 60)( 27, 59)( 28, 64)( 29, 66)( 30, 65)( 31, 70)( 32, 72)
( 33, 71)( 34, 67)( 35, 69)( 36, 68)( 73,109)( 74,111)( 75,110)( 76,115)
( 77,117)( 78,116)( 79,112)( 80,114)( 81,113)( 82,118)( 83,120)( 84,119)
( 85,124)( 86,126)( 87,125)( 88,121)( 89,123)( 90,122)( 91,127)( 92,129)
( 93,128)( 94,133)( 95,135)( 96,134)( 97,130)( 98,132)( 99,131)(100,136)
(101,138)(102,137)(103,142)(104,144)(105,143)(106,139)(107,141)(108,140);;
s1 := (  1, 38)(  2, 37)(  3, 39)(  4, 44)(  5, 43)(  6, 45)(  7, 41)(  8, 40)
(  9, 42)( 10, 47)( 11, 46)( 12, 48)( 13, 53)( 14, 52)( 15, 54)( 16, 50)
( 17, 49)( 18, 51)( 19, 56)( 20, 55)( 21, 57)( 22, 62)( 23, 61)( 24, 63)
( 25, 59)( 26, 58)( 27, 60)( 28, 65)( 29, 64)( 30, 66)( 31, 71)( 32, 70)
( 33, 72)( 34, 68)( 35, 67)( 36, 69)( 73,110)( 74,109)( 75,111)( 76,116)
( 77,115)( 78,117)( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)( 84,120)
( 85,125)( 86,124)( 87,126)( 88,122)( 89,121)( 90,123)( 91,128)( 92,127)
( 93,129)( 94,134)( 95,133)( 96,135)( 97,131)( 98,130)( 99,132)(100,137)
(101,136)(102,138)(103,143)(104,142)(105,144)(106,140)(107,139)(108,141);;
s2 := (  1, 73)(  2, 78)(  3, 80)(  4, 76)(  5, 81)(  6, 74)(  7, 79)(  8, 75)
(  9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)( 16, 88)
( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)( 24, 92)
( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)( 32,108)
( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)( 40,112)
( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)( 48,125)
( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)( 56,132)
( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)( 64,136)
( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)( 72,140);;
s3 := ( 73, 91)( 74, 92)( 75, 93)( 76, 94)( 77, 95)( 78, 96)( 79, 97)( 80, 98)
( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)( 86,104)( 87,105)( 88,106)
( 89,107)( 90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)
(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)
(123,141)(124,142)(125,143)(126,144);;
s4 := ( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)( 26, 35)
( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)( 61, 70)
( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)( 96,105)
( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)(131,140)
(132,141)(133,142)(134,143)(135,144);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  1, 37)(  2, 39)(  3, 38)(  4, 43)(  5, 45)(  6, 44)(  7, 40)
(  8, 42)(  9, 41)( 10, 46)( 11, 48)( 12, 47)( 13, 52)( 14, 54)( 15, 53)
( 16, 49)( 17, 51)( 18, 50)( 19, 55)( 20, 57)( 21, 56)( 22, 61)( 23, 63)
( 24, 62)( 25, 58)( 26, 60)( 27, 59)( 28, 64)( 29, 66)( 30, 65)( 31, 70)
( 32, 72)( 33, 71)( 34, 67)( 35, 69)( 36, 68)( 73,109)( 74,111)( 75,110)
( 76,115)( 77,117)( 78,116)( 79,112)( 80,114)( 81,113)( 82,118)( 83,120)
( 84,119)( 85,124)( 86,126)( 87,125)( 88,121)( 89,123)( 90,122)( 91,127)
( 92,129)( 93,128)( 94,133)( 95,135)( 96,134)( 97,130)( 98,132)( 99,131)
(100,136)(101,138)(102,137)(103,142)(104,144)(105,143)(106,139)(107,141)
(108,140);
s1 := Sym(144)!(  1, 38)(  2, 37)(  3, 39)(  4, 44)(  5, 43)(  6, 45)(  7, 41)
(  8, 40)(  9, 42)( 10, 47)( 11, 46)( 12, 48)( 13, 53)( 14, 52)( 15, 54)
( 16, 50)( 17, 49)( 18, 51)( 19, 56)( 20, 55)( 21, 57)( 22, 62)( 23, 61)
( 24, 63)( 25, 59)( 26, 58)( 27, 60)( 28, 65)( 29, 64)( 30, 66)( 31, 71)
( 32, 70)( 33, 72)( 34, 68)( 35, 67)( 36, 69)( 73,110)( 74,109)( 75,111)
( 76,116)( 77,115)( 78,117)( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)
( 84,120)( 85,125)( 86,124)( 87,126)( 88,122)( 89,121)( 90,123)( 91,128)
( 92,127)( 93,129)( 94,134)( 95,133)( 96,135)( 97,131)( 98,130)( 99,132)
(100,137)(101,136)(102,138)(103,143)(104,142)(105,144)(106,140)(107,139)
(108,141);
s2 := Sym(144)!(  1, 73)(  2, 78)(  3, 80)(  4, 76)(  5, 81)(  6, 74)(  7, 79)
(  8, 75)(  9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)
( 16, 88)( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)
( 24, 92)( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)
( 32,108)( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)
( 40,112)( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)
( 48,125)( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)
( 56,132)( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)
( 64,136)( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)
( 72,140);
s3 := Sym(144)!( 73, 91)( 74, 92)( 75, 93)( 76, 94)( 77, 95)( 78, 96)( 79, 97)
( 80, 98)( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)( 86,104)( 87,105)
( 88,106)( 89,107)( 90,108)(109,127)(110,128)(111,129)(112,130)(113,131)
(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)
(122,140)(123,141)(124,142)(125,143)(126,144);
s4 := Sym(144)!( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)
( 26, 35)( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)
( 61, 70)( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)
( 96,105)( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)
(131,140)(132,141)(133,142)(134,143)(135,144);
poly := sub<Sym(144)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >; 
 
References : None.
to this polytope