Questions?
See the FAQ
or other info.

Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,99274)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 24, 144, 24, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,12,2}*576b
   3-fold quotients : {4,12,2}*384a
   4-fold quotients : {6,12,2}*288b, {12,6,2}*288c
   6-fold quotients : {4,12,2}*192a
   8-fold quotients : {6,6,2}*144b
   9-fold quotients : {4,4,2}*128
   12-fold quotients : {2,12,2}*96, {4,6,2}*96a
   16-fold quotients : {6,3,2}*72
   18-fold quotients : {4,4,2}*64
   24-fold quotients : {2,6,2}*48
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 46)( 38, 48)( 39, 47)( 40, 49)
( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)( 55, 64)( 56, 66)( 57, 65)
( 58, 67)( 59, 69)( 60, 68)( 61, 70)( 62, 72)( 63, 71)( 73, 91)( 74, 93)
( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 97)( 80, 99)( 81, 98)( 82,100)
( 83,102)( 84,101)( 85,103)( 86,105)( 87,104)( 88,106)( 89,108)( 90,107)
(109,136)(110,138)(111,137)(112,139)(113,141)(114,140)(115,142)(116,144)
(117,143)(118,127)(119,129)(120,128)(121,130)(122,132)(123,131)(124,133)
(125,135)(126,134);;
s1 := (  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)(  8, 76)
(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)( 16, 86)
( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)( 24, 99)
( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)( 32,106)
( 33,108)( 34,104)( 35,103)( 36,105)( 37,110)( 38,109)( 39,111)( 40,116)
( 41,115)( 42,117)( 43,113)( 44,112)( 45,114)( 46,119)( 47,118)( 48,120)
( 49,125)( 50,124)( 51,126)( 52,122)( 53,121)( 54,123)( 55,128)( 56,127)
( 57,129)( 58,134)( 59,133)( 60,135)( 61,131)( 62,130)( 63,132)( 64,137)
( 65,136)( 66,138)( 67,143)( 68,142)( 69,144)( 70,140)( 71,139)( 72,141);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)( 26, 36)
( 27, 35)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)
( 44, 54)( 45, 53)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)
( 66, 68)( 71, 72)( 73,139)( 74,141)( 75,140)( 76,136)( 77,138)( 78,137)
( 79,142)( 80,144)( 81,143)( 82,130)( 83,132)( 84,131)( 85,127)( 86,129)
( 87,128)( 88,133)( 89,135)( 90,134)( 91,112)( 92,114)( 93,113)( 94,109)
( 95,111)( 96,110)( 97,115)( 98,117)( 99,116)(100,121)(101,123)(102,122)
(103,118)(104,120)(105,119)(106,124)(107,126)(108,125);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 46)( 38, 48)( 39, 47)
( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)( 55, 64)( 56, 66)
( 57, 65)( 58, 67)( 59, 69)( 60, 68)( 61, 70)( 62, 72)( 63, 71)( 73, 91)
( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 97)( 80, 99)( 81, 98)
( 82,100)( 83,102)( 84,101)( 85,103)( 86,105)( 87,104)( 88,106)( 89,108)
( 90,107)(109,136)(110,138)(111,137)(112,139)(113,141)(114,140)(115,142)
(116,144)(117,143)(118,127)(119,129)(120,128)(121,130)(122,132)(123,131)
(124,133)(125,135)(126,134);
s1 := Sym(146)!(  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)
(  8, 76)(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)
( 16, 86)( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)
( 24, 99)( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)
( 32,106)( 33,108)( 34,104)( 35,103)( 36,105)( 37,110)( 38,109)( 39,111)
( 40,116)( 41,115)( 42,117)( 43,113)( 44,112)( 45,114)( 46,119)( 47,118)
( 48,120)( 49,125)( 50,124)( 51,126)( 52,122)( 53,121)( 54,123)( 55,128)
( 56,127)( 57,129)( 58,134)( 59,133)( 60,135)( 61,131)( 62,130)( 63,132)
( 64,137)( 65,136)( 66,138)( 67,143)( 68,142)( 69,144)( 70,140)( 71,139)
( 72,141);
s2 := Sym(146)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)
( 26, 36)( 27, 35)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)
( 43, 52)( 44, 54)( 45, 53)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)
( 65, 69)( 66, 68)( 71, 72)( 73,139)( 74,141)( 75,140)( 76,136)( 77,138)
( 78,137)( 79,142)( 80,144)( 81,143)( 82,130)( 83,132)( 84,131)( 85,127)
( 86,129)( 87,128)( 88,133)( 89,135)( 90,134)( 91,112)( 92,114)( 93,113)
( 94,109)( 95,111)( 96,110)( 97,115)( 98,117)( 99,116)(100,121)(101,123)
(102,122)(103,118)(104,120)(105,119)(106,124)(107,126)(108,125);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope