Questions?
See the FAQ
or other info.

Polytope of Type {148,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {148,4}*1184
Also Known As : {148,4|2}. if this polytope has another name.
Group : SmallGroup(1184,116)
Rank : 3
Schlafli Type : {148,4}
Number of vertices, edges, etc : 148, 296, 4
Order of s0s1s2 : 148
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {148,2}*592, {74,4}*592
   4-fold quotients : {74,2}*296
   8-fold quotients : {37,2}*148
   37-fold quotients : {4,4}*32
   74-fold quotients : {2,4}*16, {4,2}*16
   148-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,149)(  2,185)(  3,184)(  4,183)(  5,182)(  6,181)(  7,180)(  8,179)
(  9,178)( 10,177)( 11,176)( 12,175)( 13,174)( 14,173)( 15,172)( 16,171)
( 17,170)( 18,169)( 19,168)( 20,167)( 21,166)( 22,165)( 23,164)( 24,163)
( 25,162)( 26,161)( 27,160)( 28,159)( 29,158)( 30,157)( 31,156)( 32,155)
( 33,154)( 34,153)( 35,152)( 36,151)( 37,150)( 38,186)( 39,222)( 40,221)
( 41,220)( 42,219)( 43,218)( 44,217)( 45,216)( 46,215)( 47,214)( 48,213)
( 49,212)( 50,211)( 51,210)( 52,209)( 53,208)( 54,207)( 55,206)( 56,205)
( 57,204)( 58,203)( 59,202)( 60,201)( 61,200)( 62,199)( 63,198)( 64,197)
( 65,196)( 66,195)( 67,194)( 68,193)( 69,192)( 70,191)( 71,190)( 72,189)
( 73,188)( 74,187)( 75,223)( 76,259)( 77,258)( 78,257)( 79,256)( 80,255)
( 81,254)( 82,253)( 83,252)( 84,251)( 85,250)( 86,249)( 87,248)( 88,247)
( 89,246)( 90,245)( 91,244)( 92,243)( 93,242)( 94,241)( 95,240)( 96,239)
( 97,238)( 98,237)( 99,236)(100,235)(101,234)(102,233)(103,232)(104,231)
(105,230)(106,229)(107,228)(108,227)(109,226)(110,225)(111,224)(112,260)
(113,296)(114,295)(115,294)(116,293)(117,292)(118,291)(119,290)(120,289)
(121,288)(122,287)(123,286)(124,285)(125,284)(126,283)(127,282)(128,281)
(129,280)(130,279)(131,278)(132,277)(133,276)(134,275)(135,274)(136,273)
(137,272)(138,271)(139,270)(140,269)(141,268)(142,267)(143,266)(144,265)
(145,264)(146,263)(147,262)(148,261)(297,445)(298,481)(299,480)(300,479)
(301,478)(302,477)(303,476)(304,475)(305,474)(306,473)(307,472)(308,471)
(309,470)(310,469)(311,468)(312,467)(313,466)(314,465)(315,464)(316,463)
(317,462)(318,461)(319,460)(320,459)(321,458)(322,457)(323,456)(324,455)
(325,454)(326,453)(327,452)(328,451)(329,450)(330,449)(331,448)(332,447)
(333,446)(334,482)(335,518)(336,517)(337,516)(338,515)(339,514)(340,513)
(341,512)(342,511)(343,510)(344,509)(345,508)(346,507)(347,506)(348,505)
(349,504)(350,503)(351,502)(352,501)(353,500)(354,499)(355,498)(356,497)
(357,496)(358,495)(359,494)(360,493)(361,492)(362,491)(363,490)(364,489)
(365,488)(366,487)(367,486)(368,485)(369,484)(370,483)(371,519)(372,555)
(373,554)(374,553)(375,552)(376,551)(377,550)(378,549)(379,548)(380,547)
(381,546)(382,545)(383,544)(384,543)(385,542)(386,541)(387,540)(388,539)
(389,538)(390,537)(391,536)(392,535)(393,534)(394,533)(395,532)(396,531)
(397,530)(398,529)(399,528)(400,527)(401,526)(402,525)(403,524)(404,523)
(405,522)(406,521)(407,520)(408,556)(409,592)(410,591)(411,590)(412,589)
(413,588)(414,587)(415,586)(416,585)(417,584)(418,583)(419,582)(420,581)
(421,580)(422,579)(423,578)(424,577)(425,576)(426,575)(427,574)(428,573)
(429,572)(430,571)(431,570)(432,569)(433,568)(434,567)(435,566)(436,565)
(437,564)(438,563)(439,562)(440,561)(441,560)(442,559)(443,558)(444,557);;
s1 := (  1,  2)(  3, 37)(  4, 36)(  5, 35)(  6, 34)(  7, 33)(  8, 32)(  9, 31)
( 10, 30)( 11, 29)( 12, 28)( 13, 27)( 14, 26)( 15, 25)( 16, 24)( 17, 23)
( 18, 22)( 19, 21)( 38, 39)( 40, 74)( 41, 73)( 42, 72)( 43, 71)( 44, 70)
( 45, 69)( 46, 68)( 47, 67)( 48, 66)( 49, 65)( 50, 64)( 51, 63)( 52, 62)
( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 75, 76)( 77,111)( 78,110)( 79,109)
( 80,108)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)( 87,101)
( 88,100)( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)(112,113)(114,148)
(115,147)(116,146)(117,145)(118,144)(119,143)(120,142)(121,141)(122,140)
(123,139)(124,138)(125,137)(126,136)(127,135)(128,134)(129,133)(130,132)
(149,187)(150,186)(151,222)(152,221)(153,220)(154,219)(155,218)(156,217)
(157,216)(158,215)(159,214)(160,213)(161,212)(162,211)(163,210)(164,209)
(165,208)(166,207)(167,206)(168,205)(169,204)(170,203)(171,202)(172,201)
(173,200)(174,199)(175,198)(176,197)(177,196)(178,195)(179,194)(180,193)
(181,192)(182,191)(183,190)(184,189)(185,188)(223,261)(224,260)(225,296)
(226,295)(227,294)(228,293)(229,292)(230,291)(231,290)(232,289)(233,288)
(234,287)(235,286)(236,285)(237,284)(238,283)(239,282)(240,281)(241,280)
(242,279)(243,278)(244,277)(245,276)(246,275)(247,274)(248,273)(249,272)
(250,271)(251,270)(252,269)(253,268)(254,267)(255,266)(256,265)(257,264)
(258,263)(259,262)(297,372)(298,371)(299,407)(300,406)(301,405)(302,404)
(303,403)(304,402)(305,401)(306,400)(307,399)(308,398)(309,397)(310,396)
(311,395)(312,394)(313,393)(314,392)(315,391)(316,390)(317,389)(318,388)
(319,387)(320,386)(321,385)(322,384)(323,383)(324,382)(325,381)(326,380)
(327,379)(328,378)(329,377)(330,376)(331,375)(332,374)(333,373)(334,409)
(335,408)(336,444)(337,443)(338,442)(339,441)(340,440)(341,439)(342,438)
(343,437)(344,436)(345,435)(346,434)(347,433)(348,432)(349,431)(350,430)
(351,429)(352,428)(353,427)(354,426)(355,425)(356,424)(357,423)(358,422)
(359,421)(360,420)(361,419)(362,418)(363,417)(364,416)(365,415)(366,414)
(367,413)(368,412)(369,411)(370,410)(445,557)(446,556)(447,592)(448,591)
(449,590)(450,589)(451,588)(452,587)(453,586)(454,585)(455,584)(456,583)
(457,582)(458,581)(459,580)(460,579)(461,578)(462,577)(463,576)(464,575)
(465,574)(466,573)(467,572)(468,571)(469,570)(470,569)(471,568)(472,567)
(473,566)(474,565)(475,564)(476,563)(477,562)(478,561)(479,560)(480,559)
(481,558)(482,520)(483,519)(484,555)(485,554)(486,553)(487,552)(488,551)
(489,550)(490,549)(491,548)(492,547)(493,546)(494,545)(495,544)(496,543)
(497,542)(498,541)(499,540)(500,539)(501,538)(502,537)(503,536)(504,535)
(505,534)(506,533)(507,532)(508,531)(509,530)(510,529)(511,528)(512,527)
(513,526)(514,525)(515,524)(516,523)(517,522)(518,521);;
s2 := (  1,297)(  2,298)(  3,299)(  4,300)(  5,301)(  6,302)(  7,303)(  8,304)
(  9,305)( 10,306)( 11,307)( 12,308)( 13,309)( 14,310)( 15,311)( 16,312)
( 17,313)( 18,314)( 19,315)( 20,316)( 21,317)( 22,318)( 23,319)( 24,320)
( 25,321)( 26,322)( 27,323)( 28,324)( 29,325)( 30,326)( 31,327)( 32,328)
( 33,329)( 34,330)( 35,331)( 36,332)( 37,333)( 38,334)( 39,335)( 40,336)
( 41,337)( 42,338)( 43,339)( 44,340)( 45,341)( 46,342)( 47,343)( 48,344)
( 49,345)( 50,346)( 51,347)( 52,348)( 53,349)( 54,350)( 55,351)( 56,352)
( 57,353)( 58,354)( 59,355)( 60,356)( 61,357)( 62,358)( 63,359)( 64,360)
( 65,361)( 66,362)( 67,363)( 68,364)( 69,365)( 70,366)( 71,367)( 72,368)
( 73,369)( 74,370)( 75,371)( 76,372)( 77,373)( 78,374)( 79,375)( 80,376)
( 81,377)( 82,378)( 83,379)( 84,380)( 85,381)( 86,382)( 87,383)( 88,384)
( 89,385)( 90,386)( 91,387)( 92,388)( 93,389)( 94,390)( 95,391)( 96,392)
( 97,393)( 98,394)( 99,395)(100,396)(101,397)(102,398)(103,399)(104,400)
(105,401)(106,402)(107,403)(108,404)(109,405)(110,406)(111,407)(112,408)
(113,409)(114,410)(115,411)(116,412)(117,413)(118,414)(119,415)(120,416)
(121,417)(122,418)(123,419)(124,420)(125,421)(126,422)(127,423)(128,424)
(129,425)(130,426)(131,427)(132,428)(133,429)(134,430)(135,431)(136,432)
(137,433)(138,434)(139,435)(140,436)(141,437)(142,438)(143,439)(144,440)
(145,441)(146,442)(147,443)(148,444)(149,445)(150,446)(151,447)(152,448)
(153,449)(154,450)(155,451)(156,452)(157,453)(158,454)(159,455)(160,456)
(161,457)(162,458)(163,459)(164,460)(165,461)(166,462)(167,463)(168,464)
(169,465)(170,466)(171,467)(172,468)(173,469)(174,470)(175,471)(176,472)
(177,473)(178,474)(179,475)(180,476)(181,477)(182,478)(183,479)(184,480)
(185,481)(186,482)(187,483)(188,484)(189,485)(190,486)(191,487)(192,488)
(193,489)(194,490)(195,491)(196,492)(197,493)(198,494)(199,495)(200,496)
(201,497)(202,498)(203,499)(204,500)(205,501)(206,502)(207,503)(208,504)
(209,505)(210,506)(211,507)(212,508)(213,509)(214,510)(215,511)(216,512)
(217,513)(218,514)(219,515)(220,516)(221,517)(222,518)(223,519)(224,520)
(225,521)(226,522)(227,523)(228,524)(229,525)(230,526)(231,527)(232,528)
(233,529)(234,530)(235,531)(236,532)(237,533)(238,534)(239,535)(240,536)
(241,537)(242,538)(243,539)(244,540)(245,541)(246,542)(247,543)(248,544)
(249,545)(250,546)(251,547)(252,548)(253,549)(254,550)(255,551)(256,552)
(257,553)(258,554)(259,555)(260,556)(261,557)(262,558)(263,559)(264,560)
(265,561)(266,562)(267,563)(268,564)(269,565)(270,566)(271,567)(272,568)
(273,569)(274,570)(275,571)(276,572)(277,573)(278,574)(279,575)(280,576)
(281,577)(282,578)(283,579)(284,580)(285,581)(286,582)(287,583)(288,584)
(289,585)(290,586)(291,587)(292,588)(293,589)(294,590)(295,591)(296,592);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(592)!(  1,149)(  2,185)(  3,184)(  4,183)(  5,182)(  6,181)(  7,180)
(  8,179)(  9,178)( 10,177)( 11,176)( 12,175)( 13,174)( 14,173)( 15,172)
( 16,171)( 17,170)( 18,169)( 19,168)( 20,167)( 21,166)( 22,165)( 23,164)
( 24,163)( 25,162)( 26,161)( 27,160)( 28,159)( 29,158)( 30,157)( 31,156)
( 32,155)( 33,154)( 34,153)( 35,152)( 36,151)( 37,150)( 38,186)( 39,222)
( 40,221)( 41,220)( 42,219)( 43,218)( 44,217)( 45,216)( 46,215)( 47,214)
( 48,213)( 49,212)( 50,211)( 51,210)( 52,209)( 53,208)( 54,207)( 55,206)
( 56,205)( 57,204)( 58,203)( 59,202)( 60,201)( 61,200)( 62,199)( 63,198)
( 64,197)( 65,196)( 66,195)( 67,194)( 68,193)( 69,192)( 70,191)( 71,190)
( 72,189)( 73,188)( 74,187)( 75,223)( 76,259)( 77,258)( 78,257)( 79,256)
( 80,255)( 81,254)( 82,253)( 83,252)( 84,251)( 85,250)( 86,249)( 87,248)
( 88,247)( 89,246)( 90,245)( 91,244)( 92,243)( 93,242)( 94,241)( 95,240)
( 96,239)( 97,238)( 98,237)( 99,236)(100,235)(101,234)(102,233)(103,232)
(104,231)(105,230)(106,229)(107,228)(108,227)(109,226)(110,225)(111,224)
(112,260)(113,296)(114,295)(115,294)(116,293)(117,292)(118,291)(119,290)
(120,289)(121,288)(122,287)(123,286)(124,285)(125,284)(126,283)(127,282)
(128,281)(129,280)(130,279)(131,278)(132,277)(133,276)(134,275)(135,274)
(136,273)(137,272)(138,271)(139,270)(140,269)(141,268)(142,267)(143,266)
(144,265)(145,264)(146,263)(147,262)(148,261)(297,445)(298,481)(299,480)
(300,479)(301,478)(302,477)(303,476)(304,475)(305,474)(306,473)(307,472)
(308,471)(309,470)(310,469)(311,468)(312,467)(313,466)(314,465)(315,464)
(316,463)(317,462)(318,461)(319,460)(320,459)(321,458)(322,457)(323,456)
(324,455)(325,454)(326,453)(327,452)(328,451)(329,450)(330,449)(331,448)
(332,447)(333,446)(334,482)(335,518)(336,517)(337,516)(338,515)(339,514)
(340,513)(341,512)(342,511)(343,510)(344,509)(345,508)(346,507)(347,506)
(348,505)(349,504)(350,503)(351,502)(352,501)(353,500)(354,499)(355,498)
(356,497)(357,496)(358,495)(359,494)(360,493)(361,492)(362,491)(363,490)
(364,489)(365,488)(366,487)(367,486)(368,485)(369,484)(370,483)(371,519)
(372,555)(373,554)(374,553)(375,552)(376,551)(377,550)(378,549)(379,548)
(380,547)(381,546)(382,545)(383,544)(384,543)(385,542)(386,541)(387,540)
(388,539)(389,538)(390,537)(391,536)(392,535)(393,534)(394,533)(395,532)
(396,531)(397,530)(398,529)(399,528)(400,527)(401,526)(402,525)(403,524)
(404,523)(405,522)(406,521)(407,520)(408,556)(409,592)(410,591)(411,590)
(412,589)(413,588)(414,587)(415,586)(416,585)(417,584)(418,583)(419,582)
(420,581)(421,580)(422,579)(423,578)(424,577)(425,576)(426,575)(427,574)
(428,573)(429,572)(430,571)(431,570)(432,569)(433,568)(434,567)(435,566)
(436,565)(437,564)(438,563)(439,562)(440,561)(441,560)(442,559)(443,558)
(444,557);
s1 := Sym(592)!(  1,  2)(  3, 37)(  4, 36)(  5, 35)(  6, 34)(  7, 33)(  8, 32)
(  9, 31)( 10, 30)( 11, 29)( 12, 28)( 13, 27)( 14, 26)( 15, 25)( 16, 24)
( 17, 23)( 18, 22)( 19, 21)( 38, 39)( 40, 74)( 41, 73)( 42, 72)( 43, 71)
( 44, 70)( 45, 69)( 46, 68)( 47, 67)( 48, 66)( 49, 65)( 50, 64)( 51, 63)
( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 75, 76)( 77,111)( 78,110)
( 79,109)( 80,108)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)
( 87,101)( 88,100)( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)(112,113)
(114,148)(115,147)(116,146)(117,145)(118,144)(119,143)(120,142)(121,141)
(122,140)(123,139)(124,138)(125,137)(126,136)(127,135)(128,134)(129,133)
(130,132)(149,187)(150,186)(151,222)(152,221)(153,220)(154,219)(155,218)
(156,217)(157,216)(158,215)(159,214)(160,213)(161,212)(162,211)(163,210)
(164,209)(165,208)(166,207)(167,206)(168,205)(169,204)(170,203)(171,202)
(172,201)(173,200)(174,199)(175,198)(176,197)(177,196)(178,195)(179,194)
(180,193)(181,192)(182,191)(183,190)(184,189)(185,188)(223,261)(224,260)
(225,296)(226,295)(227,294)(228,293)(229,292)(230,291)(231,290)(232,289)
(233,288)(234,287)(235,286)(236,285)(237,284)(238,283)(239,282)(240,281)
(241,280)(242,279)(243,278)(244,277)(245,276)(246,275)(247,274)(248,273)
(249,272)(250,271)(251,270)(252,269)(253,268)(254,267)(255,266)(256,265)
(257,264)(258,263)(259,262)(297,372)(298,371)(299,407)(300,406)(301,405)
(302,404)(303,403)(304,402)(305,401)(306,400)(307,399)(308,398)(309,397)
(310,396)(311,395)(312,394)(313,393)(314,392)(315,391)(316,390)(317,389)
(318,388)(319,387)(320,386)(321,385)(322,384)(323,383)(324,382)(325,381)
(326,380)(327,379)(328,378)(329,377)(330,376)(331,375)(332,374)(333,373)
(334,409)(335,408)(336,444)(337,443)(338,442)(339,441)(340,440)(341,439)
(342,438)(343,437)(344,436)(345,435)(346,434)(347,433)(348,432)(349,431)
(350,430)(351,429)(352,428)(353,427)(354,426)(355,425)(356,424)(357,423)
(358,422)(359,421)(360,420)(361,419)(362,418)(363,417)(364,416)(365,415)
(366,414)(367,413)(368,412)(369,411)(370,410)(445,557)(446,556)(447,592)
(448,591)(449,590)(450,589)(451,588)(452,587)(453,586)(454,585)(455,584)
(456,583)(457,582)(458,581)(459,580)(460,579)(461,578)(462,577)(463,576)
(464,575)(465,574)(466,573)(467,572)(468,571)(469,570)(470,569)(471,568)
(472,567)(473,566)(474,565)(475,564)(476,563)(477,562)(478,561)(479,560)
(480,559)(481,558)(482,520)(483,519)(484,555)(485,554)(486,553)(487,552)
(488,551)(489,550)(490,549)(491,548)(492,547)(493,546)(494,545)(495,544)
(496,543)(497,542)(498,541)(499,540)(500,539)(501,538)(502,537)(503,536)
(504,535)(505,534)(506,533)(507,532)(508,531)(509,530)(510,529)(511,528)
(512,527)(513,526)(514,525)(515,524)(516,523)(517,522)(518,521);
s2 := Sym(592)!(  1,297)(  2,298)(  3,299)(  4,300)(  5,301)(  6,302)(  7,303)
(  8,304)(  9,305)( 10,306)( 11,307)( 12,308)( 13,309)( 14,310)( 15,311)
( 16,312)( 17,313)( 18,314)( 19,315)( 20,316)( 21,317)( 22,318)( 23,319)
( 24,320)( 25,321)( 26,322)( 27,323)( 28,324)( 29,325)( 30,326)( 31,327)
( 32,328)( 33,329)( 34,330)( 35,331)( 36,332)( 37,333)( 38,334)( 39,335)
( 40,336)( 41,337)( 42,338)( 43,339)( 44,340)( 45,341)( 46,342)( 47,343)
( 48,344)( 49,345)( 50,346)( 51,347)( 52,348)( 53,349)( 54,350)( 55,351)
( 56,352)( 57,353)( 58,354)( 59,355)( 60,356)( 61,357)( 62,358)( 63,359)
( 64,360)( 65,361)( 66,362)( 67,363)( 68,364)( 69,365)( 70,366)( 71,367)
( 72,368)( 73,369)( 74,370)( 75,371)( 76,372)( 77,373)( 78,374)( 79,375)
( 80,376)( 81,377)( 82,378)( 83,379)( 84,380)( 85,381)( 86,382)( 87,383)
( 88,384)( 89,385)( 90,386)( 91,387)( 92,388)( 93,389)( 94,390)( 95,391)
( 96,392)( 97,393)( 98,394)( 99,395)(100,396)(101,397)(102,398)(103,399)
(104,400)(105,401)(106,402)(107,403)(108,404)(109,405)(110,406)(111,407)
(112,408)(113,409)(114,410)(115,411)(116,412)(117,413)(118,414)(119,415)
(120,416)(121,417)(122,418)(123,419)(124,420)(125,421)(126,422)(127,423)
(128,424)(129,425)(130,426)(131,427)(132,428)(133,429)(134,430)(135,431)
(136,432)(137,433)(138,434)(139,435)(140,436)(141,437)(142,438)(143,439)
(144,440)(145,441)(146,442)(147,443)(148,444)(149,445)(150,446)(151,447)
(152,448)(153,449)(154,450)(155,451)(156,452)(157,453)(158,454)(159,455)
(160,456)(161,457)(162,458)(163,459)(164,460)(165,461)(166,462)(167,463)
(168,464)(169,465)(170,466)(171,467)(172,468)(173,469)(174,470)(175,471)
(176,472)(177,473)(178,474)(179,475)(180,476)(181,477)(182,478)(183,479)
(184,480)(185,481)(186,482)(187,483)(188,484)(189,485)(190,486)(191,487)
(192,488)(193,489)(194,490)(195,491)(196,492)(197,493)(198,494)(199,495)
(200,496)(201,497)(202,498)(203,499)(204,500)(205,501)(206,502)(207,503)
(208,504)(209,505)(210,506)(211,507)(212,508)(213,509)(214,510)(215,511)
(216,512)(217,513)(218,514)(219,515)(220,516)(221,517)(222,518)(223,519)
(224,520)(225,521)(226,522)(227,523)(228,524)(229,525)(230,526)(231,527)
(232,528)(233,529)(234,530)(235,531)(236,532)(237,533)(238,534)(239,535)
(240,536)(241,537)(242,538)(243,539)(244,540)(245,541)(246,542)(247,543)
(248,544)(249,545)(250,546)(251,547)(252,548)(253,549)(254,550)(255,551)
(256,552)(257,553)(258,554)(259,555)(260,556)(261,557)(262,558)(263,559)
(264,560)(265,561)(266,562)(267,563)(268,564)(269,565)(270,566)(271,567)
(272,568)(273,569)(274,570)(275,571)(276,572)(277,573)(278,574)(279,575)
(280,576)(281,577)(282,578)(283,579)(284,580)(285,581)(286,582)(287,583)
(288,584)(289,585)(290,586)(291,587)(292,588)(293,589)(294,590)(295,591)
(296,592);
poly := sub<Sym(592)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope