Questions?
See the FAQ
or other info.

Polytope of Type {10,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,5}*120a
if this polytope has a name.
Group : SmallGroup(120,35)
Rank : 3
Schlafli Type : {10,5}
Number of vertices, edges, etc : 12, 30, 6
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {10,5,2} of size 240
Vertex Figure Of :
   {2,10,5} of size 240
   {4,10,5} of size 480
   {6,10,5} of size 720
   {8,10,5} of size 960
   {10,10,5} of size 1200
   {12,10,5} of size 1440
   {14,10,5} of size 1680
   {16,10,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,5}*240, {10,10}*240b, {10,10}*240c
   4-fold covers : {20,10}*480a, {20,10}*480b, {20,5}*480, {10,10}*480
   6-fold covers : {10,15}*720, {30,10}*720a
   8-fold covers : {40,10}*960a, {40,10}*960b, {10,20}*960a, {20,10}*960a, {10,20}*960b, {20,10}*960b, {10,10}*960
   10-fold covers : {10,5}*1200a, {10,5}*1200b, {10,10}*1200c
   12-fold covers : {60,10}*1440a, {60,10}*1440b, {20,15}*1440a, {10,30}*1440, {30,10}*1440
   14-fold covers : {10,35}*1680, {70,10}*1680a
   16-fold covers : {80,10}*1920a, {80,10}*1920b, {20,20}*1920a, {10,40}*1920a, {40,10}*1920a, {10,20}*1920, {20,10}*1920, {20,20}*1920b, {20,20}*1920c, {20,20}*1920d, {10,40}*1920b, {40,10}*1920b, {10,5}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);;
s2 := ( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(12)!( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);
s2 := Sym(12)!( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);
poly := sub<Sym(12)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 >; 
 
References : None.
to this polytope