Questions?
See the FAQ
or other info.

# Polytope of Type {10,5}

Atlas Canonical Name : {10,5}*120a
if this polytope has a name.
Group : SmallGroup(120,35)
Rank : 3
Schlafli Type : {10,5}
Number of vertices, edges, etc : 12, 30, 6
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{10,5,2} of size 240
Vertex Figure Of :
{2,10,5} of size 240
{4,10,5} of size 480
{6,10,5} of size 720
{8,10,5} of size 960
{10,10,5} of size 1200
{12,10,5} of size 1440
{14,10,5} of size 1680
{16,10,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,5}*240, {10,10}*240b, {10,10}*240c
4-fold covers : {20,10}*480a, {20,10}*480b, {20,5}*480, {10,10}*480
6-fold covers : {10,15}*720, {30,10}*720a
8-fold covers : {40,10}*960a, {40,10}*960b, {10,20}*960a, {20,10}*960a, {10,20}*960b, {20,10}*960b, {10,10}*960
10-fold covers : {10,5}*1200a, {10,5}*1200b, {10,10}*1200c
12-fold covers : {60,10}*1440a, {60,10}*1440b, {20,15}*1440a, {10,30}*1440, {30,10}*1440
14-fold covers : {10,35}*1680, {70,10}*1680a
16-fold covers : {80,10}*1920a, {80,10}*1920b, {20,20}*1920a, {10,40}*1920a, {40,10}*1920a, {10,20}*1920, {20,10}*1920, {20,20}*1920b, {20,20}*1920c, {20,20}*1920d, {10,40}*1920b, {40,10}*1920b, {10,5}*1920b
Permutation Representation (GAP) :
```s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);;
s2 := ( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(12)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(12)!( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);
s2 := Sym(12)!( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);
poly := sub<Sym(12)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 >;

```
References : None.
to this polytope