Questions?
See the FAQ
or other info.

Polytope of Type {3,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,10}*120a
Also Known As : {3,10}5if this polytope has another name.
Group : SmallGroup(120,35)
Rank : 3
Schlafli Type : {3,10}
Number of vertices, edges, etc : 6, 30, 20
Order of s0s1s2 : 5
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {3,10,2} of size 240
   {3,10,3} of size 1320
   {3,10,4} of size 1920
   {3,10,4} of size 1920
Vertex Figure Of :
   {2,3,10} of size 240
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,5}*60
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,10}*240, {6,10}*240e, {6,10}*240f
   3-fold covers : {3,10}*360
   4-fold covers : {12,10}*480c, {12,10}*480d, {3,20}*480, {6,10}*480c
   5-fold covers : {15,10}*600
   6-fold covers : {3,10}*720b, {3,30}*720, {6,10}*720b, {6,10}*720c, {6,30}*720b
   7-fold covers : {21,10}*840
   8-fold covers : {24,10}*960c, {24,10}*960d, {6,20}*960c, {12,10}*960c, {6,20}*960d, {12,10}*960d, {6,10}*960b
   9-fold covers : {9,10}*1080
   10-fold covers : {6,10}*1200b, {15,10}*1200a, {15,10}*1200b, {30,10}*1200b, {30,10}*1200c
   11-fold covers : {33,10}*1320
   12-fold covers : {12,10}*1440e, {12,10}*1440f, {3,20}*1440a, {3,60}*1440, {3,20}*1440b, {6,10}*1440f, {6,30}*1440e, {6,30}*1440f
   13-fold covers : {39,10}*1560
   14-fold covers : {6,70}*1680b, {21,10}*1680, {42,10}*1680b, {42,10}*1680c
   15-fold covers : {15,10}*1800a
   16-fold covers : {48,10}*1920c, {48,10}*1920d, {12,20}*1920g, {6,40}*1920f, {24,10}*1920d, {6,20}*1920d, {12,10}*1920c, {12,20}*1920k, {12,20}*1920l, {12,20}*1920m, {6,40}*1920h, {24,10}*1920f, {6,10}*1920e
Permutation Representation (GAP) :
s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 1, 2)( 3, 4)( 5,11)( 8,10);;
s2 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, 
s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(12)!( 1, 2)( 3, 4)( 5,11)( 8,10);
s2 := Sym(12)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
poly := sub<Sym(12)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 >; 
 
References : None.
to this polytope