Questions?
See the FAQ
or other info.

# Polytope of Type {5,6}

Atlas Canonical Name : {5,6}*120c
if this polytope has a name.
Group : SmallGroup(120,35)
Rank : 3
Schlafli Type : {5,6}
Number of vertices, edges, etc : 10, 30, 12
Order of s0s1s2 : 10
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,6,2} of size 240
{5,6,4} of size 480
{5,6,6} of size 720
{5,6,8} of size 960
{5,6,10} of size 1200
{5,6,12} of size 1440
{5,6,14} of size 1680
{5,6,16} of size 1920
Vertex Figure Of :
{2,5,6} of size 240
{3,5,6} of size 1320
{4,5,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,6}*240b, {10,6}*240c, {10,6}*240d
4-fold covers : {10,12}*480c, {10,12}*480d, {5,12}*480, {10,6}*480c
6-fold covers : {10,6}*720b, {15,6}*720c, {15,6}*720d
8-fold covers : {10,24}*960c, {10,24}*960d, {10,12}*960c, {20,6}*960c, {10,12}*960d, {20,6}*960d, {10,6}*960b
10-fold covers : {5,6}*1200b, {5,30}*1200b, {10,30}*1200b
12-fold covers : {10,12}*1440e, {10,12}*1440f, {15,12}*1440a, {15,12}*1440b, {10,6}*1440f, {30,6}*1440e, {30,6}*1440f
14-fold covers : {10,42}*1680b, {35,6}*1680c
16-fold covers : {10,48}*1920c, {10,48}*1920d, {20,12}*1920g, {10,24}*1920d, {40,6}*1920f, {10,12}*1920c, {20,6}*1920d, {20,12}*1920k, {20,12}*1920l, {20,12}*1920m, {10,24}*1920f, {40,6}*1920h, {5,6}*1920b
Permutation Representation (GAP) :
```s0 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
s1 := ( 1, 4)( 2, 7)( 3,11)( 5,10)( 6, 9)( 8,12);;
s2 := ( 1, 3)( 2, 6)( 8, 9)(10,11);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(12)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
s1 := Sym(12)!( 1, 4)( 2, 7)( 3,11)( 5,10)( 6, 9)( 8,12);
s2 := Sym(12)!( 1, 3)( 2, 6)( 8, 9)(10,11);
poly := sub<Sym(12)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0 >;

```
References : None.
to this polytope